Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phùng Đức Hậu

Cho phương trình  x2-2(m+1)x+m2+2m=0 (1) , (với m là tham số ). Tìm các giá trị của m để phương trình (1) có hai nghiệm trái dấu

Nguyễn Lê Phước Thịnh
1 tháng 4 2021 lúc 21:58

Để phương trình (1) có hai nghiệm trái dấu thì \(1\left(m^2+2m\right)< 0\)

\(\Leftrightarrow m^2+2m< 0\)

\(\Leftrightarrow m^2+2m+1< 1\)

\(\Leftrightarrow\left(m+1\right)^2< 1\)

\(\Leftrightarrow\left\{{}\begin{matrix}m+1>-1\\m+1< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-2\\m< 0\end{matrix}\right.\Leftrightarrow-2< m< 0\)

𝓓𝓾𝔂 𝓐𝓷𝓱
1 tháng 4 2021 lúc 21:59

Ta có: \(\Delta'=1>0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt

Theo Vi-ét: \(x_1x_2=m^2+2m\)

Để phương trình có 2 nghiệm trái dấu 

\(\Leftrightarrow m^2+2m< 0\) \(\Leftrightarrow-2< m< 0\)

Vậy để phương trình có 2 nghiệm trái dấu thì \(-2< m< 0\)


Các câu hỏi tương tự
Chan
Xem chi tiết
Nguyễn Thị Hoàng My
Xem chi tiết
Kim Taehyungie
Xem chi tiết
Huy Tran Tuan
Xem chi tiết
An Lê
Xem chi tiết
Muội Yang Hồ
Xem chi tiết
Nguyên Thảo Lương
Xem chi tiết
Chan
Xem chi tiết
Nguyễn Dino
Xem chi tiết