x + \(\dfrac{x}{2}\)+\(\dfrac{x}{3}\)+\(\dfrac{x}{6}\)= -12
1/ \(\dfrac{x+4}{4}+\dfrac{3x-7}{5}=\dfrac{7x+2}{20}\)
2/ \(\dfrac{x}{6}+\dfrac{1-3x}{9}=\dfrac{-x+1}{12}\)
3/ \(\dfrac{x-3}{3}-\dfrac{x+2}{12}=\dfrac{2x-1}{4}\)
4/ \(\dfrac{x-2}{4}-\dfrac{2x+3}{3}=\dfrac{x+6}{12}\)
5/ \(\dfrac{2x-1}{12}-\dfrac{3-x}{18}=\dfrac{-1}{36}\)
1: Ta có: \(\dfrac{x+4}{4}+\dfrac{3x-7}{5}=\dfrac{7x+2}{20}\)
\(\Leftrightarrow5x+20+12x-28=7x+2\)
\(\Leftrightarrow17x-7x=2+8=10\)
hay x=1
2: Ta có: \(\dfrac{x}{6}+\dfrac{1-3x}{9}=\dfrac{-x+1}{12}\)
\(\Leftrightarrow\dfrac{6x}{36}+\dfrac{4\left(1-3x\right)}{36}=\dfrac{3\left(-x+1\right)}{36}\)
\(\Leftrightarrow6x+4-12x=-3x+3\)
\(\Leftrightarrow-6x+3x=3-4\)
hay \(x=\dfrac{1}{3}\)
3: Ta có: \(\dfrac{x-3}{3}-\dfrac{x+2}{12}=\dfrac{2x-1}{4}\)
\(\Leftrightarrow4x-12-x-2=6x-3\)
\(\Leftrightarrow3x-14-6x+3=0\)
\(\Leftrightarrow-3x=11\)
hay \(x=-\dfrac{11}{3}\)
4: Ta có: \(\dfrac{x-2}{4}-\dfrac{2x+3}{3}=\dfrac{x+6}{12}\)
\(\Leftrightarrow3x-6-8x-12=x+6\)
\(\Leftrightarrow-5x-x=6+18\)
hay x=-4
5: Ta có: \(\dfrac{2x-1}{12}-\dfrac{3-x}{18}=\dfrac{-1}{36}\)
\(\Leftrightarrow6x-3+2x-6=-1\)
\(\Leftrightarrow8x=8\)
hay x=1
bài 4 giải các phương trình sau
b,\(\dfrac{x+2}{3}-\dfrac{3}{4}=\dfrac{x-1}{3}\)
d,\(\dfrac{x-2}{4}+\dfrac{x+1}{6}=\dfrac{2x}{3}\)
f,\(\dfrac{x+2}{4}+\dfrac{2x-3}{3}=\dfrac{x-12}{6}\)
h,\(\dfrac{10x+3}{12}=1+\dfrac{6+8x}{9}\)
j,\(\dfrac{2x-1}{5}-\dfrac{x-2}{3}=\dfrac{x+7}{15}\)
m,\(\dfrac{2+x}{5}-0,5x=\dfrac{1-2x}{4}+0,25\)
k,\(\dfrac{x}{3}-\dfrac{2x+1}{2}=\dfrac{x}{6}-x\)
giúp mk câu k nhé đề bài như trên
b: \(\Leftrightarrow4x+8-9=4x-4\)
=>-1=-4(loại)
d: \(\Leftrightarrow3\left(x-2\right)+2\left(x+1\right)=8x\)
=>8x=3x-6+2x+2=5x-4
=>3x=-4
=>x=-4/3
f: \(\Leftrightarrow3\left(x+2\right)+4\left(2x-3\right)=2\left(x-12\right)\)
=>3x+6+8x-12=2x-24
=>11x-6=2x-24
=>9x=-18
=>x=-2
Bài 3:
a) \(\dfrac{2x-1}{5}\)-\(\dfrac{x-2}{3}\)
=\(\dfrac{x+7}{15}\)
b) \(\dfrac{x+3}{2}\)-\(\dfrac{x-1}{3}\)
=\(\dfrac{x+5}{6}\)+1
c) \(\dfrac{2\left(x+5\right)}{3}\)+\(\dfrac{x+12}{2}\)
-\(\dfrac{5\left(x-2\right)}{6}\)=\(\dfrac{x}{3}\)+11
d) \(\dfrac{x-4}{5}\)+\(\dfrac{3x-2}{10}\)-x
=\(\dfrac{2x-5}{3}\)-\(\dfrac{7x+2}{6}\)
e) \(\dfrac{\left(2x-3\right)\left(2x+3\right)}{8}\)
=\(\dfrac{\left(x-4^{ }\right)^2}{6}\)+\(\dfrac{\left(x-2\right)^2}{3}\)
d) \(\dfrac{7x^2-14x-5}{15}\)
=\(\dfrac{\left(2x+1\right)^2}{5}\)-\(\dfrac{\left(x-1\right)^2}{3}\)
e) \(\dfrac{\left(7x+1\right)\left(x-2\right)}{10}\)+\(\dfrac{2}{5}\)
=\(\dfrac{\left(x-2\right)^2}{5}\)+\(\dfrac{\left(x-1\right)\left(x-3\right)}{2}\)
a) Ta có: \(\dfrac{2x-1}{5}-\dfrac{x-2}{3}=\dfrac{x+7}{15}\)
\(\Leftrightarrow\dfrac{3\left(2x-1\right)}{15}-\dfrac{5\left(x-2\right)}{15}=\dfrac{x+7}{15}\)
\(\Leftrightarrow6x-3-5x+10-x-7=0\)
\(\Leftrightarrow0x=0\)(luôn đúng)
Vậy: S={x|\(x\in R\)}
Tìm x, biết:
a) \(\dfrac{3}{4}x\) - \(\dfrac{7}{12}\) = \(\dfrac{5}{6}\) - \(\dfrac{2}{3}\)
b) -\(\dfrac{5}{x}\) = \(\dfrac{20}{28}\)
c) \(2\dfrac{1}{3}\) : x = 7
d) \(\dfrac{-105}{12}\) < x < \(\dfrac{20}{7}\)
\(a,\dfrac{3}{4}x-\dfrac{7}{12}=\dfrac{5}{6}-\dfrac{2}{3}\\ \Rightarrow\dfrac{3}{4}x-\dfrac{7}{12}=\dfrac{1}{6}\\ \Rightarrow\dfrac{3}{4}x=\dfrac{1}{6}+\dfrac{7}{12}\\ \Rightarrow\dfrac{3}{4}x=\dfrac{3}{4}\\ \Rightarrow x=\dfrac{3}{4}:\dfrac{3}{4}\\ \Rightarrow x=1\\ b,\dfrac{-5}{x}=\dfrac{20}{28}\\ \Rightarrow\dfrac{-5}{x}=\dfrac{5}{7}\\ \Rightarrow\dfrac{-5}{x}=\dfrac{-5}{-7}\\ \Rightarrow x=-7\\ c,2\dfrac{1}{3}:x=7\\ \Rightarrow\dfrac{7}{3}:x=7\\ \Rightarrow x=\dfrac{7}{3}:7\\ \Rightarrow x=\dfrac{1}{3}\)
\(d,\dfrac{-105}{12}< x< \dfrac{20}{7}\Rightarrow x\in\left\{-8;-7;...;2\right\}\)
a: \(\Leftrightarrow x\cdot\dfrac{3}{4}=\dfrac{3}{4}\)
hay x=1
b: \(\Leftrightarrow x=\dfrac{-28\cdot5}{20}=-7\)
c: \(\Leftrightarrow x=\dfrac{7}{3}:7=\dfrac{1}{3}\)
d: \(\Leftrightarrow-8< x< 3\)
hay \(x\in\left\{-7;-6;-5;-4;-3;-2;-1;0;1;2\right\}\)
\(a)\dfrac{3}{4}x-\dfrac{7}{12}=\dfrac{1}{6}\\ \dfrac{3}{4}x=\dfrac{1}{6}+\dfrac{7}{12}\\ \dfrac{3}{4}x=\dfrac{2}{3}\\ x=\dfrac{2}{3}:\dfrac{3}{4}\\ x=\dfrac{8}{9}\\ b)-\dfrac{5}{x}=\dfrac{20}{28}\\ -5\cdot28=x\cdot20=-140\\ x=-140:20\\ x=-7\\ c)\dfrac{7}{3}:x=7\\ x=\dfrac{7}{3}:7\\ x=\dfrac{1}{3}\)
1) \(\dfrac{5x-2}{3}\)= \(\dfrac{5-3x}{2}\)
2) \(\dfrac{x+4}{5}\) - x + 4 = \(\dfrac{x}{3}\) - \(\dfrac{x-2}{2}\)
3) \(\dfrac{10x+3}{12}\)= 1 + \(\dfrac{6+8x}{9}\)
4) \(\dfrac{x+1}{3}\)- \(\dfrac{x-2}{6}\) = \(\dfrac{2x-1}{2}\)
2) Ta có: \(\dfrac{x+4}{5}-x+4=\dfrac{x}{3}-\dfrac{x-2}{2}\)
\(\Leftrightarrow\dfrac{6\left(x+4\right)}{30}-\dfrac{30\left(x-4\right)}{30}=\dfrac{10x}{30}-\dfrac{15\left(x-2\right)}{30}\)
\(\Leftrightarrow6x+24-30x+120=10x-15x+30\)
\(\Leftrightarrow-24x+144=-5x+30\)
\(\Leftrightarrow-24x+144+5x-30=0\)
\(\Leftrightarrow-19x+114=0\)
\(\Leftrightarrow-19x=-114\)
hay x=6
Vậy: x=6
3) Ta có: \(\dfrac{10x+3}{12}=1+\dfrac{6+8x}{9}\)
\(\Leftrightarrow\dfrac{3\left(10x+3\right)}{36}=\dfrac{36}{36}+\dfrac{4\left(6+8x\right)}{36}\)
\(\Leftrightarrow30x+9=36+24+32x\)
\(\Leftrightarrow30x+9-60-32x=0\)
\(\Leftrightarrow-2x-51=0\)
\(\Leftrightarrow-2x=51\)
hay \(x=-\dfrac{51}{2}\)
Vậy: \(x=-\dfrac{51}{2}\)
4) Ta có: \(\dfrac{x+1}{3}-\dfrac{x-2}{6}=\dfrac{2x-1}{2}\)
\(\Leftrightarrow\dfrac{2\left(x+1\right)}{6}-\dfrac{x-2}{6}=\dfrac{3\left(2x-1\right)}{6}\)
\(\Leftrightarrow2x+2-x+2=6x-3\)
\(\Leftrightarrow x+4-6x+3=0\)
\(\Leftrightarrow-5x+7=0\)
\(\Leftrightarrow-5x=-7\)
hay \(x=\dfrac{7}{5}\)
Vậy: \(x=\dfrac{7}{5}\)
1) \(\dfrac{5x-2}{3}=\dfrac{5-3x}{2}\)
\(2\left(5x-2\right)=3\left(5-3x\right)\)
\(10x-4=15-9x\)
\(10x+9x=15+4\)
\(19x=19\)
\(x=1\)
Vậy \(x=1\)
2) Ta có: ⇔6(x+4)30−30(x−4)30=10x30−15(x−2)30⇔6(x+4)30−30(x−4)30=10x30−15(x−2)30
⇔6x+24−30x+120=10x−15x+30⇔6x+24−30x+120=10x−15x+30
⇔−24x+144=−5x+30⇔−24x+144=−5x+30
⇔−24x+144+5x−30=0⇔−24x+144+5x−30=0
⇔−19x+114=0⇔−19x+114=0
⇔−19x=−114⇔−19x=−114
hay x=6
Vậy: x=6
3) Ta có: ⇔3(10x+3)36=3636+4(6+8x)36⇔3(10x+3)36=3636+4(6+8x)36
⇔30x+9=36+24+32x⇔30x+9=36+24+32x
⇔30x+9−60−32x=0⇔30x+9−60−32x=0
⇔−2x−51=0⇔−2x−51=0
⇔−2x=51⇔−2x=51
hay x=−512x=−512
4) Ta có: ⇔2(x+1)6−x−26=3(2x−1)6⇔2(x+1)6−x−26=3(2x−1)6
⇔2x+2−x+2=6x−3⇔2x+2−x+2=6x−3
⇔x+4−6x+3=0⇔x+4−6x+3=0
⇔−5x+7=0⇔−5x+7=0
⇔−5x=−7⇔−5x=−7
hay x=75
h) \(\dfrac{x}{2}-\dfrac{1}{x}=\dfrac{1}{12}\)
i) \(x^2-\dfrac{7}{6}x+\dfrac{1}{3}=0\)
k) \(\dfrac{13}{x-1}+\dfrac{5}{2x-2}-\dfrac{6}{3x-3}\)
`h)x/2-1/x=1/12(x ne 0)`
`<=>6x^2-12=x`
`<=>6x^2-x-12=0`
`<=>6x^2-9x+8x-12=0`
`<=>3x(2x-3)+4(2x-3)=0`
`<=>(2x-3)(3x+4)=0`
`<=>` \(\left[ \begin{array}{l}x=\dfrac32\\x=-\dfrac43\end{array} \right.\)
`i)x^2-7/6x+1/3=0`
`<=>6x^2-7x+2=0`
`<=>6x^2-3x-4x+2=0`
`<=>3x(2x-1)-2(2x-1)=0`
`<=>(2x-1)(3x-2)=0`
`<=>` \(\left[ \begin{array}{l}x=\dfrac12\\x=\dfrac23\end{array} \right.\)
Câu cuối không có dấu "=" nên không tìm được x :v
- Hai câu h, i bấm nốt đáp án để đẹp nha ;-; câu k thiếu đề :v
h) Ta có: \(\dfrac{x}{2}-\dfrac{1}{x}=\dfrac{1}{12}\)
\(\Leftrightarrow\dfrac{x^2-2}{2x}=\dfrac{1}{12}\)
\(\Leftrightarrow12\left(x^2-2\right)-2x=0\)
\(\Leftrightarrow12x^2-2x-24=0\)
\(\Delta=\left(-2\right)^2-4\cdot12\cdot\left(-24\right)=1156\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{2+34}{12}=\dfrac{36}{12}=3\\x_2=\dfrac{2-34}{12}=\dfrac{-32}{12}=-\dfrac{8}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{3;-\dfrac{8}{3}\right\}\)
i) Ta có: \(x^2-\dfrac{7}{6}x+\dfrac{1}{3}=0\)
\(\Leftrightarrow6x^2-7x+2=0\)
\(\Leftrightarrow6x^2-3x-4x+2=0\)
\(\Leftrightarrow3x\left(2x-1\right)-2\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{1}{2};\dfrac{2}{3}\right\}\)
Tính bằng cách thuận tiện nhất:
a) 60 x (\(\dfrac{7}{12}\) + \(\dfrac{4}{15}\))
b) \(\dfrac{1}{2}\) x \(\dfrac{2}{3}\) x \(\dfrac{3}{4}\) x \(\dfrac{4}{5}\) x \(\dfrac{5}{6}\) x \(\dfrac{6}{7}\) x \(\dfrac{7}{8}\) x \(\dfrac{8}{9}\)
60x [7/12+4/15]
60x153/180
=9180/180
b 1/2x2/3x3/4x4/5x5/6x6/7x7/8x8/9=40320/4032
g) \(3-\dfrac{2}{2x-3}=\dfrac{2}{5}=\dfrac{2}{9-6x}-\dfrac{3}{2}\)
h) \(\dfrac{x}{2}-\dfrac{1}{x}=\dfrac{1}{12}\)
i) \(x^2-\dfrac{7}{6}x+\dfrac{1}{3}=0\)
k) \(\dfrac{13}{x-1}+\dfrac{5}{2x-2}-\dfrac{6}{3x-3}\)
m) \(\left(\dfrac{3}{2}-\dfrac{2}{-5}\right):x-\dfrac{1}{2}=\dfrac{3}{2}\)
n) \(\left(\dfrac{3}{2}-\dfrac{5}{11}-\dfrac{3}{13}\right)\left(2x-2\right)=\left(-\dfrac{3}{4}+\dfrac{5}{22}+\dfrac{3}{26}\right)\)
4 câu đầu hìn như sai đề :v
`m)(3/2-2/(-5)):x-1/2=3/2`
`<=>(3/2+2/5):x=3/2+1/2=2`
`<=>19/10:x=2`
`<=>x=19/10:2=19/20`
`n)(3/2-5/11-3/13)(2x-2)=(-3/4+5/22+3/26)`
`<=>(3/2-5/11-3/13)(2x-2)+3/4-5/22-3/26=0`
`<=>(3/2-5/11-3/13)(2x-2)+1/2(3/2-5/11-3/13)=0`
`<=>(3/2-5/11-3/13)(2x-2+1/2)=0`
Mà `3/2-5/11-3/13>0`
`<=>2x-2+1/2=0`
`<=>2x-3/2=0`
`<=>2x=3/2<=>x=3/4`
h, \(\dfrac{x}{2}-\dfrac{1}{x}=\dfrac{1}{12}\left(x\ne0\right)\)
\(\Leftrightarrow\dfrac{x^2}{2}-1=\dfrac{x}{12}\)
\(\Leftrightarrow x^2-\dfrac{x}{6}-2=0\)
\(\Leftrightarrow x^2-2.x.\dfrac{1}{12}+\dfrac{1}{144}-\dfrac{289}{144}=0\)
\(\Leftrightarrow\left(x-\dfrac{1}{12}\right)^2=\dfrac{289}{144}\)
\(\Leftrightarrow x=\dfrac{1}{12}\pm\dfrac{\sqrt{289}}{12}\)
Vậy ...
i, \(\Leftrightarrow x^2-\dfrac{2.x.7}{12}+\dfrac{49}{144}-\dfrac{1}{144}=0\)
\(\Leftrightarrow\left(x-\dfrac{7}{2}\right)^2=\dfrac{1}{144}\)
\(\Leftrightarrow x=\dfrac{7}{2}\pm\dfrac{1}{12}\)
Vậy ...
h) Ta có: \(\dfrac{x}{2}-\dfrac{1}{x}=\dfrac{1}{12}\)
\(\Leftrightarrow\dfrac{x^2-2}{2x}=\dfrac{1}{12}\)
\(\Leftrightarrow12x^2-24-2x=0\)
\(\Delta=\left(-2\right)^2-4\cdot12\cdot\left(-24\right)=1156\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{2-34}{24}=\dfrac{-8}{3}\\x_2=\dfrac{2+34}{24}=\dfrac{36}{24}=\dfrac{3}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{8}{3};\dfrac{3}{2}\right\}\)
m) Ta có: \(\left(\dfrac{3}{2}-\dfrac{2}{-5}\right):x-\dfrac{1}{2}=\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{19}{10}:x=2\)
hay \(x=\dfrac{19}{20}\)
Vậy: \(S=\left\{\dfrac{19}{20}\right\}\)
4,\(\dfrac{x+1}{3}\)+\(\dfrac{3\left(2x+1\right)}{4}\)=\(\dfrac{2x+3\left(x+1\right)}{6}\)+\(\dfrac{7+12x}{12}\)
5,\(\dfrac{2x}{3}\)+\(\dfrac{2x-1}{6}\)=4-\(\dfrac{x}{3}\)
6,\(\dfrac{x-1}{2}\)+\(\dfrac{x-1}{4}\)=1-\(\dfrac{2\left(x-1\right)}{3}\)
4, \(\Leftrightarrow4x+4+9\left(2x+1\right)=4x+6\left(x+1\right)+7+12x\)
\(\Leftrightarrow22x+13=22x+13\)vậy pt có vô số nghiệm
5, \(\dfrac{2x}{3}+\dfrac{2x-1}{6}=4-\dfrac{x}{3}\Rightarrow4x+2x-1=24-2x\)
\(\Leftrightarrow8x=25\Leftrightarrow x=\dfrac{25}{8}\)
6, \(\dfrac{x-1}{2}+\dfrac{x-1}{4}=1-\dfrac{2\left(x-1\right)}{3}\Rightarrow6x-6+3x-3=12-8\left(x-1\right)\)
\(\Leftrightarrow9x-9=20-8x\Leftrightarrow17x=29\Leftrightarrow x=\dfrac{29}{17}\)
Tìm x, biết:
a) x+\(\dfrac{1}{6}\)=\(\dfrac{-3}{8}\) b) \(2-\left(\dfrac{3}{4}-x\right)=\dfrac{7}{12}\)
c) \(\dfrac{1}{2}x\)+\(\dfrac{1}{8}x=\dfrac{3}{4}\) d) 75%-\(1\dfrac{1}{2}+0,5:\dfrac{5}{12}-\left(\dfrac{-1}{2}\right)^2\)
\(a.x+\dfrac{1}{6}=-\dfrac{3}{8}\)
\(\Leftrightarrow x=-\dfrac{13}{24}\)
\(b.2-\left(\dfrac{3}{4}-x\right)=\dfrac{7}{12}\)
\(\Leftrightarrow2-\dfrac{3}{4}+x=\dfrac{7}{12}\)
\(\Leftrightarrow x=-\dfrac{2}{3}\)
\(c.\dfrac{1}{2}x+\dfrac{1}{8}x=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{5}{8}x=\dfrac{3}{4}\)
\(\Leftrightarrow x=\dfrac{6}{5}\)
\(d.75\%-1\dfrac{1}{2}+0,5:\dfrac{5}{12}-\left(\dfrac{-1}{2}\right)^2\)
\(=\dfrac{75}{100}-\dfrac{3}{2}+\dfrac{1}{2}:\dfrac{5}{12}-\dfrac{1}{4}\)
\(=-\dfrac{3}{4}+\dfrac{6}{5}-\dfrac{1}{4}\)
\(=\dfrac{1}{5}\)
a) \(x+\dfrac{1}{6}=\dfrac{-3}{8}\)
\(x=\dfrac{-3}{8}-\dfrac{1}{6}\)
\(x=\dfrac{-13}{24}\)
vậy x =....
b) \(2-\left(\dfrac{3}{4}-x\right)=\dfrac{7}{12}\)
\(\dfrac{3}{4}-x=2-\dfrac{7}{12}\)
\(\dfrac{3}{4}-x=\dfrac{17}{12}\)
\(x=\dfrac{3}{4}-\dfrac{17}{12}\)
\(x=\dfrac{-2}{3}\)
vậy x =....