Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần T.Anh
Xem chi tiết
Hồng Phúc
9 tháng 8 2021 lúc 0:12

Đặt \(\sqrt{x^2-4x+5}=t\left(t\ge1\right)\)

\(\sqrt{x^2-4x+5}=m+4x-x^2\)

\(\Leftrightarrow m=x^2-4x+5+\sqrt{x^2-4x+5}-5\)

\(\Leftrightarrow m=f\left(t\right)=t^2+t-5\)

Phương trình có nghiệm khi \(m\ge minf\left(t\right)=-3\)

đấng ys
Xem chi tiết
Minhmetmoi
14 tháng 12 2021 lúc 9:17

PT\(\Leftrightarrow\left(x^2-4x+5\right)+3\sqrt{x^2-4x+5}-2m-2=0\)

Đặt: \(a=x^2-4x+5\left(a\ge1\right)\)

Pt trở thành: \(a^2+3a-2m-2=0\)

Pt trên có nghiệm khi:
\(\Delta\ge0\Leftrightarrow9+4\left(2m+2\right)\ge0\Leftrightarrow m\ge-\dfrac{17}{8}\)

Phương lan
Xem chi tiết
Chí Cường
3 tháng 11 2018 lúc 15:53

1)Dat t=\(\sqrt{4x-x^2}\)\(\Rightarrow Pt\Leftrightarrow t^2+2t+1=m+1\ge0\Rightarrow m\ge-1\)

Theo dinh li Viet thi \(\left\{{}\begin{matrix}t_1+t_2=-2\\t_1t_2=-m\end{matrix}\right.\Rightarrow-m\le0\Leftrightarrow m\ge0}\)

Chí Cường
3 tháng 11 2018 lúc 16:17

Dat \(t=\sqrt{x^2+4x+5}\left(t\ge1\right)\)\(\Rightarrow Pt\Leftrightarrow t^2+t+m-2=0\)

DK:\(\Delta=1-4\left(m-2\right)=9-4m\ge0\Leftrightarrow m\le\dfrac{9}{4}\)

Pt co nghiem la \(t=\dfrac{-1-\sqrt{\Delta}}{2}\left(loai\right),t=\dfrac{-1+\sqrt{\Delta}}{2}\)

Vi \(t\ge1\)\(\Rightarrow\sqrt{\Delta}\ge3\Leftrightarrow9-4m\ge9\Leftrightarrow m\le0\)

\(5\ge\left|x\right|=\left|\sqrt{\dfrac{-1+\sqrt{9-4m}}{2}}\right|=\sqrt{\dfrac{-1+\sqrt{9-4m}}{2}}\Leftrightarrow\sqrt{9-4m}\le51\Leftrightarrow m\ge-648\)Vay \(-648\le m\le0\)

đấng ys
Xem chi tiết
Đỗ Tuệ Lâm
18 tháng 1 2022 lúc 20:17

nghiệm thuộc giá trị 0 

tìm m bằng cách tách biến 

\(m=-x^2+4+3\sqrt{x\left(4-x\right)}\)

nghiệm thuộc giá trị 4 

vẫn tách biến :

\(m=22,97366596\)

Đỗ Tuệ Lâm
18 tháng 1 2022 lúc 20:18

này là câu trl vs đề có x thuộc nghiệm 0 và 4 , tại mình nghĩ bn ghi đề chưa đủ

Nguyễn Việt Lâm
18 tháng 1 2022 lúc 20:37

Đặt \(\sqrt{4x-x^2}=t\Rightarrow t\in\left[0;2\right]\)

\(\Rightarrow3t-m=-t^2\Rightarrow t^2+3t=m\)

Xét hàm \(f\left(t\right)=t^2+3t\) trên \(\left[0;2\right]\)

\(a=1>0;-\dfrac{b}{2a}=-\dfrac{3}{2}< 0\Rightarrow f\left(t\right)\) đồng biến trên \(\left[0;2\right]\)

\(\Rightarrow f\left(0\right)\le f\left(t\right)\le f\left(2\right)\Rightarrow0\le f\left(t\right)\le10\)

\(\Rightarrow0\le m\le10\)

Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 5 2021 lúc 22:39

Bạn kiểm tra lại đề, sao có 2 dầu = trong pt thế kia nhỉ?

Duy Mẫn
Xem chi tiết
Nghĩa “Tôi yêu thiên nhi...
7 tháng 6 2016 lúc 23:41

Bất đẳng thức

Duy Mẫn
8 tháng 6 2016 lúc 7:04

thanks bạn 

Ngọc anh
Xem chi tiết
Pain Địa Ngục Đạo
20 tháng 3 2018 lúc 12:22

bài 1 câu a,b tự làm nhé " thay k=-3 vào là ra 

bài 1 câu c "

\(4x^2-25+k^2+4kx=0.\)

thay x=-2 vào ta được

\(16-25+k^2+-8k=0\)

\(-9+k^2-8k=0\Leftrightarrow k^2+k-9k-9=0\)

\(k\left(k+1\right)-9\left(k+1\right)=0\)

\(\left(k+1\right)\left(k-9\right)=0\)

vậy k=1 , 9 thì pt nhận x=-2

bài 2 xác đinh m ? đề ko có mờ đề phải là xác định a nếu là xác định a thì thay x=1 vào rồi tính là ra 

bài 3 cũng éo hiểu xác định a ? a ở đâu

1 là phải xác đinh m , nếu là xác đinh m thì thay x=-2 vào rồi làm

. kết luận của chúa Pain đề như ###

Phương Uyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 3 2022 lúc 23:53

Bài 2: 

a: \(x^2-4x+3=0\)

=>x=1 hoặc x=3

\(x_1^2+x_2^2=1^2+3^2=10\)

b: \(\dfrac{1}{x_1+2}+\dfrac{1}{x_2+2}=\dfrac{1}{1}+\dfrac{1}{5}=\dfrac{6}{5}\)

c: \(x_1^3+x_2^3=1^3+3^3=28\)

d: \(x_1-x_2=1-3=-2\)

Sakura
Xem chi tiết
Akai Haruma
17 tháng 8 2019 lúc 0:06

Bài 2:
\(199-2x-x^2=200-(x^2+2x+1)=200-(x+1)^2\leq 200, \forall x\in\mathbb{Z}\)

\(\Rightarrow 4y^2=2+\sqrt{199-2x-x^2}\leq 2+\sqrt{200}\)

\(\Leftrightarrow y^2\leq \frac{2+\sqrt{200}}{4}< 9\)

\(\Rightarrow -3< y< 3\). Mà $y$ nguyên nên $y\in\left\{-2;-1;0;1;2\right\}$

Thay từng giá trị của $y$ vào PT ban đầu ta tìm được các cặp $(x,y)$ sau:

$(x,y)=(1,\pm 2); (-3,\pm 2); (13,\pm 1); (-15,\pm 1)$

Akai Haruma
24 tháng 8 2019 lúc 23:36

Bài 1:

a) ĐKXĐ: \(x\geq \frac{-3}{2}\)

PT \(\Leftrightarrow x^2+4x+5-2\sqrt{2x+3}=0\)

\(\Leftrightarrow x^2+2x+1+(2x+3)-2\sqrt{2x+3}+1=0\)

\(\Leftrightarrow (x+1)^2+(\sqrt{2x+3}-1)^2=0\)

Vì $(x+1)^2\geq 0; (\sqrt{2x+3}-1)^2\geq 0$ với mọi $x\geq \frac{-3}{2}$ nên để tổng của chúng bằng $0$ thì $(x+1)^2=(\sqrt{2x+3}-1)^2=0$

$\Leftrightarrow x=-1$

Vậy $x=-1$

b) ĐKXĐ: \(x^2-4x-8\geq 0\)

PT \(\Leftrightarrow 2(x^2-4x-8)-3\sqrt{x^2-4x-8}=2\)

Đặt \(\sqrt{x^2-4x-8}=a(a\geq 0)\) thì PT trở thành:

\(2a^2-3a=2\)

\(\Leftrightarrow 2a^2-3a-2=0\Leftrightarrow (a-2)(2a+1)=0\)

\(\Rightarrow a=2\) (do $a\geq 0$)

\(\Leftrightarrow x^2-4x-8=4\)

\(\Leftrightarrow x^2-4x-12=0\Leftrightarrow \left[\begin{matrix} x=6\\ x=-2\end{matrix}\right.\) (đều thỏa mãn)

Akai Haruma
24 tháng 8 2019 lúc 23:42

Bài 2:
\(199-2x-x^2=200-(x^2+2x+1)=200-(x+1)^2\leq 200, \forall x\in\mathbb{Z}\)

\(\Rightarrow 4y^2=2+\sqrt{199-2x-x^2}\leq 2+\sqrt{200}\)

\(\Leftrightarrow y^2\leq \frac{2+\sqrt{200}}{4}< 9\)

\(\Rightarrow -3< y< 3\). Mà $y$ nguyên nên $y\in\left\{-2;-1;0;1;2\right\}$

Thay từng giá trị của $y$ vào PT ban đầu ta tìm được các cặp $(x,y)$ sau:

$(x,y)=(1,\pm 2); (-3,\pm 2); (13,\pm 1); (-15,\pm 1)$