Bài 2:
\(199-2x-x^2=200-(x^2+2x+1)=200-(x+1)^2\leq 200, \forall x\in\mathbb{Z}\)
\(\Rightarrow 4y^2=2+\sqrt{199-2x-x^2}\leq 2+\sqrt{200}\)
\(\Leftrightarrow y^2\leq \frac{2+\sqrt{200}}{4}< 9\)
\(\Rightarrow -3< y< 3\). Mà $y$ nguyên nên $y\in\left\{-2;-1;0;1;2\right\}$
Thay từng giá trị của $y$ vào PT ban đầu ta tìm được các cặp $(x,y)$ sau:
$(x,y)=(1,\pm 2); (-3,\pm 2); (13,\pm 1); (-15,\pm 1)$
Bài 1:
a) ĐKXĐ: \(x\geq \frac{-3}{2}\)
PT \(\Leftrightarrow x^2+4x+5-2\sqrt{2x+3}=0\)
\(\Leftrightarrow x^2+2x+1+(2x+3)-2\sqrt{2x+3}+1=0\)
\(\Leftrightarrow (x+1)^2+(\sqrt{2x+3}-1)^2=0\)
Vì $(x+1)^2\geq 0; (\sqrt{2x+3}-1)^2\geq 0$ với mọi $x\geq \frac{-3}{2}$ nên để tổng của chúng bằng $0$ thì $(x+1)^2=(\sqrt{2x+3}-1)^2=0$
$\Leftrightarrow x=-1$
Vậy $x=-1$
b) ĐKXĐ: \(x^2-4x-8\geq 0\)
PT \(\Leftrightarrow 2(x^2-4x-8)-3\sqrt{x^2-4x-8}=2\)
Đặt \(\sqrt{x^2-4x-8}=a(a\geq 0)\) thì PT trở thành:
\(2a^2-3a=2\)
\(\Leftrightarrow 2a^2-3a-2=0\Leftrightarrow (a-2)(2a+1)=0\)
\(\Rightarrow a=2\) (do $a\geq 0$)
\(\Leftrightarrow x^2-4x-8=4\)
\(\Leftrightarrow x^2-4x-12=0\Leftrightarrow \left[\begin{matrix} x=6\\ x=-2\end{matrix}\right.\) (đều thỏa mãn)
Bài 2:
\(199-2x-x^2=200-(x^2+2x+1)=200-(x+1)^2\leq 200, \forall x\in\mathbb{Z}\)
\(\Rightarrow 4y^2=2+\sqrt{199-2x-x^2}\leq 2+\sqrt{200}\)
\(\Leftrightarrow y^2\leq \frac{2+\sqrt{200}}{4}< 9\)
\(\Rightarrow -3< y< 3\). Mà $y$ nguyên nên $y\in\left\{-2;-1;0;1;2\right\}$
Thay từng giá trị của $y$ vào PT ban đầu ta tìm được các cặp $(x,y)$ sau:
$(x,y)=(1,\pm 2); (-3,\pm 2); (13,\pm 1); (-15,\pm 1)$
1, b/ \(2x^2-8x-3\sqrt{x^2-4x-8}=18\) (*)
<=>\(2\left(x^2-4x-8\right)-3\sqrt{x^2-4x-8}=18-16=2\)
Đặt \(x^2-4x-8=a\)
=>\(2a-3\sqrt{a}-2=0\)
<=> \(\left(\sqrt{a}-2\right)\left(2\sqrt{a}+1\right)=0\)
=> \(\left[{}\begin{matrix}\sqrt{a}=2\\2\sqrt{a}+1=0\end{matrix}\right.\)<=>\(\left[{}\begin{matrix}a=4\\\sqrt{a}=-\frac{1}{2}\left(ktm\right)\end{matrix}\right.\)=> \(x^2-4x-8=4\)
<=> \(\left(x^2-4x+4\right)-4-8=4\)
<=> \(\left(x-2\right)^2=16\) <=> \(\left[{}\begin{matrix}x-2=4\\x-2=-4\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\)(tm)
Vậy pt (*) có tập nghiệm \(S=\left\{6,-2\right\}\)