Chứng tỏ:
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{9^2}< \dfrac{2}{3}\)
Bài 1:Chứng tỏ rằng:B=\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{5^2}\)+\(\dfrac{1}{6^2}\)+\(\dfrac{1}{7^2}\)\(\dfrac{1}{8^2}\)<1
Bài 2:Chứng tỏ rằng:E=\(\dfrac{3}{4}\)+\(\dfrac{8}{9}\)+\(\dfrac{15}{16}\)+...+\(\dfrac{2499}{2500}\)<1
Bài 3:Chứng tỏ rằng:1<\(\dfrac{2011}{2020^2+1}\)+\(\dfrac{2021}{2020^2+2}\)+\(\dfrac{2021}{2020^3+3}\)+...+\(\dfrac{2021}{2020^3+2020}\)< 2
1:
\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}\)
...
\(\dfrac{1}{8^2}< \dfrac{1}{7\cdot8}\)
=>\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+..+\dfrac{1}{7\cdot8}\)
=>\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}=\dfrac{7}{8}< 1\)
Cho A=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\)
Chứng tỏ \(\dfrac{8}{9}>A>\dfrac{2}{5}\)
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\)
Xét: \(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
.
.
.
\(\dfrac{1}{9^2}< \dfrac{1}{8.9}\)
\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)
\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{9}\Rightarrow A< \dfrac{8}{9}\)(1)
Xét: \(\dfrac{1}{2^2}>\dfrac{1}{2.3}\)
\(\dfrac{1}{3^2}>\dfrac{1}{3.4}\)
.
.
.
\(\dfrac{1}{9^2}>\dfrac{1}{9.10}\)
\(\Rightarrow A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)
\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{10}\Rightarrow A>\dfrac{2}{5}\) (2)
Từ (1) và (2)
\(\Rightarrow\dfrac{8}{9}>A>\dfrac{2}{5}\left(đpcm\right)\)
Chứng tỏ rằng : \(\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{60^2}< \dfrac{4}{9}\)
Đặt \(A=\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{60^2}\)
\(A< \dfrac{1}{3^2}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{59.60}\)
\(A< \dfrac{1}{3^2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{59}-\dfrac{1}{60}\)
\(A< \dfrac{1}{3^2}+\dfrac{1}{3}-\dfrac{1}{60}\)
\(A< \dfrac{4}{9}-\dfrac{1}{60}< \dfrac{4}{9}\) (đpcm)
chứng tỏ rằng:\(\dfrac{1}{2^3}+\dfrac{1}{4^2}+...+\dfrac{1}{60^2}< \dfrac{1}{9}\)
chứng tỏ rằng: \(\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{60^2}< \dfrac{1}{9}\)
Cho \(A=\dfrac{1}{3^2}+\dfrac{1}{6^2}+\dfrac{1}{9^2}+...+\dfrac{1}{9n^2}.\)
Chứng tỏ rằng
A\(< \dfrac{2}{9}\)
Bộ ông rảnh rỗi sinh nông nổi ak ??
Ta có :
\(A=\dfrac{1}{3^2}+\dfrac{1}{6^2}+\dfrac{1}{9^2}+....................+\dfrac{1}{9n^2}\)
\(\Rightarrow A=\dfrac{1}{\left(3.1\right)^2}+\dfrac{1}{\left(3.2\right)^2}+\dfrac{1}{\left(3.3\right)^2}+...................+\dfrac{1}{\left(3n\right)^2}\)
\(\Rightarrow A=\dfrac{2}{9}\left(\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+..............+\dfrac{1}{n^2}\right)\)
\(\Rightarrow A< \dfrac{2}{9}\left(\dfrac{1}{1}+\dfrac{1}{1.2}+\dfrac{1}{2.3}+..................+\dfrac{1}{\left(n-1\right)n}\right)\)
\(\Rightarrow A< \dfrac{2}{9}\left(1+1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+.........+\dfrac{1}{n-1}-\dfrac{1}{n}\right)\)
\(\Rightarrow A< \dfrac{2}{9}\left(1+1-\dfrac{1}{n}\right)\)
\(\Rightarrow A< \dfrac{2}{9}\left(2-\dfrac{1}{n}\right)< \dfrac{2}{9}\)
\(\Rightarrow A< \dfrac{2}{9}\rightarrowđpcm\)
P/S : Lâu lâu ko ôn dạng này nên quên hết ồi!!
Chứng tỏ rằng:
a)\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{3}{4}\)
b)\(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}\)
b\()\)
1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2.3 + 1/3.4 +... + 1/99.100
1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/3 + 1/3 -1/4 +... + 1/99 + 1/100
1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/100
1/2^2 + 1/3^2 +... + 1/100^2 < 3/4 - 1/100 < 3/4
Tương tự như vậy với câu a\()\)
1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2.3 + 1/3.4 +... + 1/99.100
1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/3 + 1/3 -1/4 +... + 1/99 + 1/100
1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/100
1/2^2 + 1/3^2 +... + 1/100^2 < 3/4 - 1/100 < 1/2
Bài 1:
a, Cho A = \(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}\)
Chứng tỏ: A <\(\dfrac{1}{2}\)
b, Cho B = \(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{20}}\)
Chứng tỏ B < 1
c, Cho C = \(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)
Chứng tỏ C < \(\dfrac{1}{2}\)
d, Cho D = \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{20^2}\)
Chứng tỏ D < 1
Giải
Ta có : \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{20^2}< \dfrac{1}{19.20}\)
\(\Rightarrow\)D < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{19.20}\)
Nhận xét: \(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};...;\dfrac{1}{19.20}=\dfrac{1}{19}-\dfrac{1}{20}\)
\(\Rightarrow\) D< 1- \(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)
D< 1 - \(\dfrac{1}{20}\)
D< \(\dfrac{19}{20}\)<1
\(\Rightarrow\)D< 1
Vậy D=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{5^2}\)<1
A=\(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)
A=\(\dfrac{1}{2^2.1}+\dfrac{1}{2^2.2^2}+\dfrac{1}{3^2.2^2}+...+\dfrac{1}{50^2.2^2}\)
A=\(\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)\)
\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2.2}+\dfrac{1}{3.3}+...+\dfrac{1}{50.50}\right)\)
Ta có :
\(\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4.4}< \dfrac{1}{3.4};...;\dfrac{1}{50.50}< \dfrac{1}{49.50}\)
\(\Rightarrow A< \dfrac{1}{2^2}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right)\)Nhận xét :
\(\dfrac{1}{1.2}< 1-\dfrac{1}{2};\dfrac{1}{2.3}< \dfrac{1}{2}-\dfrac{1}{3};...;\dfrac{1}{49.50}< \dfrac{1}{49}-\dfrac{1}{50}\)
\(\Rightarrow A< \dfrac{1}{2^2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)
A<\(\dfrac{1}{2^2}\left(1-\dfrac{1}{50}\right)\)
A<\(\dfrac{1}{4}.\dfrac{49}{50}\)<1
A<\(\dfrac{49}{200}< \dfrac{1}{2}\)
\(\Rightarrow A< \dfrac{1}{2}\)
Chứng tỏ rằng: A= 2+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}^{ }\)+\(\dfrac{1}{4^2}\)+...+\(\dfrac{1}{100^2}\)<3