Chứng tỏ rằng \(A=\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{10^2}< \dfrac{1}{2}\)
cho \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\) chứng minh \(\dfrac{2}{5}< A< \dfrac{8}{9}\)
Cho biểu thức A=\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{5^2}\)+\(\dfrac{1}{6^2}\)+\(\dfrac{1}{7^2}\)+\(\dfrac{1}{8^2}\)+\(\dfrac{1}{9^2}\)+\(\dfrac{1}{10^2}\)
Chứng minh rằng A<1
chứng tỏ rằng S = \(\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{n^2-1}{n^2}\) không là số tự nhiên với mọi
n\(\in\) N, n>2
1/ Cho A= \(\dfrac{1}{3}\)-\(\dfrac{2}{3^2}\)+\(\dfrac{3}{3^3}\)-\(\dfrac{4}{3^4}\)+.....+\(\dfrac{99}{3^{99}}\)-\(\dfrac{100}{3^{100}}\) Chứng minh A < \(\dfrac{3}{16}\)
2/ Cho B=(\(\dfrac{1}{2^2}\)-1)(\(\dfrac{1}{3^2}\)-1)....(\(\dfrac{1}{100^2}\)-1) So sánh B và \(\dfrac{-1}{2}\)
Chứng minh rằng :
\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}< 1\)
chứng minh rằng
\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}< 1\)
Chứng tỏ rằng tổng\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{45^2}\)không phải là số nguyên
Chứng minh rằng \(\dfrac{3}{1^2+2^2}+\dfrac{5}{2^2+3^2}+...+\dfrac{19}{9^2+10^2}\) < 1.