Chứng tỏ rằng : \(\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{60^2}< \dfrac{4}{9}\)
chứng tỏ rằng:\(\dfrac{1}{2^3}+\dfrac{1}{4^2}+...+\dfrac{1}{60^2}< \dfrac{1}{9}\)
Bài 1:Chứng tỏ rằng:B=\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{5^2}\)+\(\dfrac{1}{6^2}\)+\(\dfrac{1}{7^2}\)\(\dfrac{1}{8^2}\)<1
Bài 2:Chứng tỏ rằng:E=\(\dfrac{3}{4}\)+\(\dfrac{8}{9}\)+\(\dfrac{15}{16}\)+...+\(\dfrac{2499}{2500}\)<1
Bài 3:Chứng tỏ rằng:1<\(\dfrac{2011}{2020^2+1}\)+\(\dfrac{2021}{2020^2+2}\)+\(\dfrac{2021}{2020^3+3}\)+...+\(\dfrac{2021}{2020^3+2020}\)< 2
Chứng tỏ rằng:
a)\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{3}{4}\)
b)\(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}\)
Chứng tỏ rằng: A= 2+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}^{ }\)+\(\dfrac{1}{4^2}\)+...+\(\dfrac{1}{100^2}\)<3
chứng tỏ rằng :
B= \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{8^2}\)<1
Chứng tỏ rằng :
\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)+\(\dfrac{1}{5}\) > \(\dfrac{4}{5}\)
Cho A = \(\dfrac{1}{2}\) + \(\dfrac{1}{2^{2}}\)+ \(\dfrac{1}{2^{3}}\)+ \(\dfrac{1}{2^{4}}\) + ...+ \(\dfrac{1}{2^{10}}\)
Chứng tỏ rằng A + \(\dfrac{1}{2^{10}}\)= 1
chứng tỏ rằng:\(\dfrac{1}{2^2}\dfrac{1}{3^2}\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{3}{4}\)
cho em lời giải chi tiết với ạ