Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phương Lan
Xem chi tiết
Thái Thủy Tiên
20 tháng 4 2018 lúc 21:15

2. \(\left(2,7x-1\dfrac{1}{2}x\right):\dfrac{2}{7}=\dfrac{-21}{4}\)

\(\Leftrightarrow x.\left(\dfrac{27}{10}+\dfrac{-3}{2}\right)=\dfrac{-21}{4}.\dfrac{2}{7}\)

\(\Leftrightarrow x.\left(\dfrac{27}{10}+\dfrac{-15}{10}\right)=\dfrac{-3}{2}\)

\(\Leftrightarrow x.\dfrac{6}{5}=\dfrac{-3}{2}\)

\(\Leftrightarrow x=\dfrac{-3}{2}:\dfrac{6}{5}\)

\(\Leftrightarrow x=\dfrac{-3}{2}.\dfrac{5}{6}\)

\(\Leftrightarrow x=\dfrac{-5}{4}\)

Thái Thủy Tiên
20 tháng 4 2018 lúc 21:20

3.\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{3}{4}=1\\2x-\dfrac{3}{4}=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=1+\dfrac{3}{4}\\2x=\left(-1\right)+\dfrac{3}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{7}{3}\\2x=\dfrac{-7}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}.\dfrac{1}{2}\\x=\dfrac{-7}{3}.\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{6}\\x=\dfrac{-7}{6}\end{matrix}\right.\)

vậy \(x\in\left\{\dfrac{7}{6};\dfrac{-7}{6}\right\}\)

Thái Thủy Tiên
20 tháng 4 2018 lúc 21:21

1. bạn tính từ biểu thức ra rồi làm

dài dòng nên mình không tiện làm nhé

Nguyễn Hữu Thế
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 12 2018 lúc 20:28

Ta có:

\(VT=\dfrac{1}{x^2+yz}+\dfrac{1}{y^2+xz}+\dfrac{1}{z^2+xy}\le\dfrac{1}{2x\sqrt{yz}}+\dfrac{1}{2y\sqrt{xz}}+\dfrac{1}{2z\sqrt{xy}}\)

\(\Rightarrow VT\le\dfrac{\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}{2xyz}\le\dfrac{\dfrac{x+y}{2}+\dfrac{y+z}{2}+\dfrac{x+z}{2}}{2xyz}=\dfrac{x+y+z}{2xyz}\)

Dấu "=" xảy ra khi \(x=y=z\)

Dương Nhật Hoàng
Xem chi tiết
Lightning Farron
15 tháng 11 2017 lúc 23:31

\(VT=\dfrac{x\sqrt{y}+y\sqrt{x}}{x+y}-\dfrac{x+y}{2}\le\dfrac{\sqrt{2xy\left(x+y\right)}}{x+y}-\dfrac{x+y}{2}\)

\(\le\dfrac{\left(x+y\right)\sqrt{\dfrac{x+y}{2}}}{x+y}-\dfrac{x+y}{2}\). Cần cm \(\sqrt{\dfrac{x+y}{2}}-\dfrac{x+y}{2}\le\dfrac{1}{4}\)

Đặt \(x+y=t>0\) thì:

\(\sqrt{\dfrac{t}{2}}-\dfrac{t}{2}\le\dfrac{1}{4}\Leftrightarrow-\dfrac{1}{4}\left(\sqrt{2t}-1\right)^2\le0\) *Đúng*

Nguyễn Linh
Xem chi tiết
YangSu
13 tháng 4 2022 lúc 21:18

undefined

Nguyen Ha
Xem chi tiết
Lightning Farron
10 tháng 6 2017 lúc 17:24

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\dfrac{1}{ab+a+2}=\dfrac{1}{ab+1+a+1}\le\dfrac{1}{4}\left(\dfrac{1}{ab+1}+\dfrac{1}{a+1}\right)\)

\(=\dfrac{1}{4}\left(\dfrac{abc}{ab+abc}+\dfrac{1}{a+1}\right)=\dfrac{1}{4}\left(\dfrac{abc}{ab\left(c+1\right)}+\dfrac{1}{a+1}\right)=\dfrac{1}{4}\left(\dfrac{c}{c+1}+\dfrac{1}{a+1}\right)\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\dfrac{1}{bc+b+2}\le\dfrac{1}{4}\left(\dfrac{a}{a+1}+\dfrac{1}{b+1}\right);\dfrac{1}{ca+c+2}\le\dfrac{1}{4}\left(\dfrac{b}{b+1}+\dfrac{1}{c+1}\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\le\dfrac{1}{4}\left(\dfrac{a+1}{a+1}+\dfrac{b+1}{b+1}+\dfrac{c+1}{c+1}\right)=\dfrac{1}{4}\cdot3=\dfrac{3}{4}\)

Đẳng thức xảy ra khi \(a=b=c=1\)

Aki Tsuki
10 tháng 6 2017 lúc 17:19

nhấn vào!!!!!

Eren
2 tháng 6 2018 lúc 22:04

Hình như cái này là chuyên Toán Sư Phạm 2014 - 2015

Khánh Huyền
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2022 lúc 19:16

Câu 3: 

Gọi thời gian đọi 1 và đội 2 hoàn thành công việc khi làm một mình lần lượt là x,y

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{24}\\\dfrac{10}{x}+\dfrac{15}{y}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=60\end{matrix}\right.\)

Nguyễn Phương Lan
Xem chi tiết
Snow Princess
23 tháng 4 2018 lúc 19:57

\(\dfrac{-5}{6}+\dfrac{8}{3}+\dfrac{-29}{6}\le x\le\dfrac{-1}{2}+2+\dfrac{5}{2}\)

\(\dfrac{-5}{6}+\dfrac{16}{6}+\dfrac{-29}{6}\le x\le\dfrac{-1}{2}+\dfrac{4}{2}+\dfrac{5}{2}\)

\(\dfrac{-18}{6}\le x\le\dfrac{8}{2}\)

\(-3\le x\le4\)

\(\Rightarrow x\in\left\{-3;-2;-1;0;1;2;3;4\right\}\)

Vo Thi Minh Dao
Xem chi tiết
 Mashiro Shiina
5 tháng 12 2018 lúc 13:05

Sửa đề nhé\(\dfrac{1}{3x+3y+2z}=\dfrac{1}{\left(z+x\right)+\left(z+y\right)+\left(x+y\right)+\left(x+y\right)}\)

\(\le\dfrac{1}{16}\left(\dfrac{1}{x+z}+\dfrac{1}{z+y}+\dfrac{1}{x+y}+\dfrac{1}{x+y}\right)\)

CMTT và cộng theo vế:

\(VT\le\dfrac{1}{16}\left(\dfrac{1}{x+z}+\dfrac{1}{z+y}+\dfrac{1}{x+y}+\dfrac{1}{x+y}+\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}+\dfrac{1}{x+z}+\dfrac{1}{x+z}+\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{y+z}\right)\)

\(=\dfrac{1}{16}.24=\dfrac{3}{2}\)

\("="\Leftrightarrow x=y=z=\dfrac{1}{4}\)

Pinky Chi
Xem chi tiết
Mặc Chinh Vũ
25 tháng 7 2018 lúc 20:03

\(1)\dfrac{1}{5}+\dfrac{2}{30}+\dfrac{121}{156}\le x\le\dfrac{1}{2}+\dfrac{156}{72}+\dfrac{1}{3}\)

\(\dfrac{156}{780}+\dfrac{26}{780}+\dfrac{605}{780}\le x\le\dfrac{3}{6}+\dfrac{13}{6}+\dfrac{2}{6}\)

\(\dfrac{787}{780}\le x\le2\)

\(\Rightarrow x\in\left\{2\right\}\)

Nguyễn Lê Phước Thịnh
1 tháng 8 2022 lúc 22:57

Câu 2: 

\(N=\dfrac{2a+9+5a+17-3a-4a-23}{a+3}=\dfrac{3}{a+3}\)

Để N là số tự nhiên thì \(\left\{{}\begin{matrix}a>-3\\a+3\in\left\{1;-1;3;-3\right\}\end{matrix}\right.\Leftrightarrow a\in\left\{-2;0\right\}\)