2) Tìm y:
1 -(\(\dfrac{12}{5}\) + y - \(\dfrac{8}{9}\)) : \(\dfrac{16}{9}\) = 0
Tìm y:
-y:\(\dfrac{1}{2}\)-\(\dfrac{5}{2}\)=4\(\dfrac{1}{2}\)
Tính:
N = \(\dfrac{3}{4}\).\(\dfrac{8}{9}\).\(\dfrac{15}{16}\)....\(\dfrac{899}{900}\).\(\dfrac{960}{961}\)
S=\(\dfrac{1}{1.2.3}\)+\(\dfrac{1}{2.3.4}\)+\(\dfrac{1}{3.4.5}\)+...+\(\dfrac{1}{10.11.12}\)+\(\dfrac{1}{11.12.13}\)
Tìm y:
-y:1/2-5/2=4+1/2
-y:1/2 = 4+1/2+5/2
-y:1/2 = 7
-y = 7.2
y = -14
Vậy y = -14
tính thuận tiện:
\(\dfrac{4}{5}+\dfrac{2}{3}+\dfrac{1}{5}+\dfrac{1}{3}\) \(\dfrac{17}{12}+\dfrac{29}{7}-\dfrac{8}{7}+\dfrac{7}{12}\) \(\dfrac{9}{15}+\dfrac{16}{7}+\dfrac{2}{5}-\dfrac{1}{7}-\dfrac{2}{14}\)
\(\dfrac{2}{5}+\dfrac{6}{9}+\dfrac{7}{4}+\dfrac{3}{5}+\dfrac{1}{3}+\dfrac{1}{4}\)
mik sẽ chỉ tick 3 bn xong trước phải chi tiết rõ ràng
a: =4/5+1/5+2/3+1/3=1+1=2
b: =17/12+7/12+29/7-8/7=3+2=5
c: =3/5+2/5+16/7-1/7-1/7
=1+2=3
d: =2/5+3/5+2/3+1/3+7/4+1/4
=1+1+2
=4
\(\dfrac{4}{5}+\dfrac{2}{3}+\dfrac{1}{5}+\dfrac{1}{3}\)
\(=\left(\dfrac{4}{5}+\dfrac{1}{5}\right)+\left(\dfrac{2}{3}+\dfrac{1}{3}\right)\)
\(=\dfrac{5}{5}+\dfrac{3}{3}\)
\(=1+1\)
\(=2\)
============
\(\dfrac{17}{12}+\dfrac{29}{7}-\dfrac{8}{7}+\dfrac{7}{12}\)
\(=\left(\dfrac{17}{12}+\dfrac{7}{12}\right)+\left(\dfrac{29}{7}-\dfrac{8}{7}\right)\)
\(=\dfrac{24}{12}+\dfrac{21}{7}\)
\(=2+3\)
\(=5\)
====================
\(\dfrac{9}{15}+\dfrac{16}{7}+\dfrac{2}{5}-\dfrac{1}{7}-\dfrac{2}{14}\)
\(=\dfrac{9}{15}+\dfrac{16}{7}+\dfrac{6}{15}-\dfrac{1}{7}-\dfrac{1}{7}\)
\(=\left(\dfrac{9}{15}+\dfrac{6}{15}\right)+\left(\dfrac{16}{7}-\dfrac{1}{7}-\dfrac{1}{7}\right)\)
\(=\dfrac{15}{15}+\dfrac{14}{7}\)
\(=1+2\)
\(=3\)
===============
\(\dfrac{2}{5}+\dfrac{6}{9}+\dfrac{7}{4}+\dfrac{3}{5}+\dfrac{1}{3}+\dfrac{1}{4}\)
\(=\dfrac{2}{5}+\dfrac{2}{3}+\dfrac{7}{4}+\dfrac{3}{5}+\dfrac{1}{3}+\dfrac{1}{4}\)
\(=\left(\dfrac{2}{5}+\dfrac{3}{5}\right)+\left(\dfrac{2}{3}+\dfrac{1}{3}\right)+\left(\dfrac{7}{4}+\dfrac{1}{4}\right)\)
\(=\dfrac{5}{5}+\dfrac{3}{3}+\dfrac{8}{4}\)
\(=1+1+2\)
\(=4\)
Bài 1 : Thực hiện phép tính
a) \(\dfrac{19}{12}\) + | \(\dfrac{-5}{2}\) | + ( \(\dfrac{3}{2}\) )2
b) \(\dfrac{2}{11}\) . \(\dfrac{16}{9}\) - \(\dfrac{2}{11}\) . \(\dfrac{7}{9}\)
Bài 2 : Tìm x , biết
\(\dfrac{a}{8}\) = \(\dfrac{b}{3}\) và a - b = 55
Bài 1:
a) \(\dfrac{19}{12}+\left|\dfrac{-5}{2}\right|+\left(\dfrac{3}{2}\right)^2=\dfrac{19}{12}+\dfrac{5}{2}+\dfrac{9}{4}\)
\(=\dfrac{19+5.6+9.3}{12}=\dfrac{76}{12}=\dfrac{19}{3}\)
b) \(\dfrac{2}{11}.\dfrac{16}{9}-\dfrac{2}{11}.\dfrac{7}{9}=\dfrac{2}{11}\left(\dfrac{16}{9}-\dfrac{7}{9}\right)=\dfrac{2}{11}.1=\dfrac{2}{11}\)
Bài 2:
Áp dụng t/c dtsbn:
\(\dfrac{a}{8}=\dfrac{b}{3}=\dfrac{a-b}{8-3}=\dfrac{55}{5}=11\)
\(\Rightarrow\left\{{}\begin{matrix}x=11.8=88\\b=11.3=33\end{matrix}\right.\)
Tính:
\(\dfrac{1}{3}+\dfrac{2}{9}\) \(\dfrac{1}{2}+\dfrac{3}{8}\) \(\dfrac{5}{12}+\dfrac{2}{3}\)
\(\dfrac{5}{16}+\dfrac{3}{8}\) \(\dfrac{4}{15}+\dfrac{3}{5}\) \(\dfrac{8}{63}+\dfrac{7}{10}\)
\(\dfrac{1}{3}+\dfrac{2}{9}=\dfrac{3}{3\times3}+\dfrac{2}{9}=\dfrac{3}{9}+\dfrac{2}{9}=\dfrac{5}{9}\)
\(\dfrac{1}{2}+\dfrac{3}{8}=\dfrac{4}{2\times4}+\dfrac{3}{8}=\dfrac{4}{8}+\dfrac{3}{8}=\dfrac{7}{8}\)
\(\dfrac{5}{12}+\dfrac{2}{3}=\dfrac{5}{12}+\dfrac{2\times4}{3\times4}=\dfrac{5}{12}+\dfrac{8}{12}=\dfrac{13}{12}\)
\(\dfrac{5}{16}+\dfrac{3}{8}=\dfrac{5}{16}+\dfrac{3\times2}{8\times2}=\dfrac{5}{16}+\dfrac{6}{16}=\dfrac{11}{16}\)
\(\dfrac{4}{15}+\dfrac{3}{5}=\dfrac{4}{15}+\dfrac{3\times3}{5\times3}=\dfrac{4}{15}+\dfrac{9}{15}=\dfrac{13}{15}\)
\(\dfrac{8}{63}+\dfrac{7}{10}=\dfrac{8\times10}{63\times10}+\dfrac{7\times63}{10\times63}=\dfrac{80}{630}+\dfrac{441}{630}=\dfrac{521}{630}\)
1/ Tìm x,y biết:
a/ \(\dfrac{x}{2}\) = \(\dfrac{y}{5}\) và x+y=-21
b/ 7x = 3y và x-y=16
c/ \(\dfrac{x}{y}\) = \(\dfrac{5}{9}\) và 3x+2x=66
d/ \(\dfrac{x}{15}\) = \(\dfrac{y}{7}\) và x-2y=16
e/ \(\dfrac{x}{5}\) = \(\dfrac{y}{2}\) và x × y = 1000
2/ Tìm x,y,z biết
\(\dfrac{x}{13}\) = \(\dfrac{y}{7}\) = \(\dfrac{z}{5}\) và x-y-z=6
a. Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3$
$\Rightarrow x=2(-3)=-6; y=5(-3)=-15$
b. Áp dụng tính chất dãy tỉ số bằng nhau:
$7x=3y=\frac{x}{\frac{1}{7}}=\frac{y}{\frac{1}{3}}=\frac{x-y}{\frac{1}{7}-\frac{1}{3}}=\frac{16}{\frac{-4}{21}}=-84$
$\Rightarrow x=(-84):7=-12; y=-84:3=-28$
c. $\frac{x}{y}=\frac{5}{9}\Rightarrow \frac{x}{5}=\frac{y}{9}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{5}=\frac{y}{9}=\frac{3x}{15}=\frac{2y}{18}=\frac{3x+2y}{15+18}=\frac{66}{33}=2$
$\Rightarrow x=2.5=10; y=9.2=18$
d. Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{15}=\frac{y}{7}=\frac{2y}{14}=\frac{x-2y}{15-14}=\frac{16}{1}=16$
$\Rightarrow x=16.15=240; y=7.16=112$
e.
Đặt $\frac{x}{5}=\frac{y}{2}=k\Rightarrow x=5k ; y=2k$
Khi đó: $xy=5k.2k=10k^2=1000\Rightarrow k^2=100\Rightarrow k=\pm 10$
Với $k=10$ thì $x=5k=50; y=2k=20$
Với $k=-10$ thì $x=5k=-50; y=2k=-20$
Bài 2:
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{13}-\frac{y}{7}-\frac{z}{5}=\frac{x-y-z}{13-7-5}=\frac{6}{1}=6$
$\Rightarrow x=13.6=78; y=7.6=42; z=5.6=30$
Giải hệ phương trình:
a) \(\left\{{}\begin{matrix}x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}=5\\\left(xy-1\right)^2=x^2-y^2+2\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x,y,z>0\\\dfrac{1}{x}+\dfrac{9}{y}+\dfrac{16}{z}=9\\x+y+z\le4\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}x+y+z=3\\x^4+y^4+z^4=3xyz\end{matrix}\right.\)
b) Áp dụng bđt Svac-xơ:
\(\dfrac{1}{x}+\dfrac{9}{y}+\dfrac{16}{z}\ge\dfrac{\left(1+3+4\right)^2}{x+y+z}\ge\dfrac{64}{4}=16>9\)
=> hpt vô nghiệm
c) Ở đây x,y,z là các số thực dương
Áp dụng cosi: \(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)=3xyz\)
Dấu = xảy ra khi \(x=y=z=\dfrac{3}{3}=1\)
bài 1 tính :
\(\dfrac{-8}{9}\) . \(\dfrac{12}{19}\) . \(\dfrac{9}{-4}\) . \(\dfrac{19}{24}\) \(\dfrac{-5}{16}\) . \(\dfrac{17}{15}\) : \(\dfrac{-17}{8}\)
\(\dfrac{4}{13}\) . \(\dfrac{2}{7}\) + \(\dfrac{-3}{26}\) + \(\dfrac{4}{13}\) . \(\dfrac{5}{7}\) \(\dfrac{6}{11}\) . \(\dfrac{3}{4}\) + \(\dfrac{-12}{60}\) +\(\dfrac{-3}{4}\) .\(\dfrac{-5}{11}\)
giúp mk vs mn ơi , mai cô giáo ktra mk r
a: \(=\dfrac{8}{9}\cdot\dfrac{9}{4}\cdot\dfrac{12}{19}\cdot\dfrac{19}{24}=\dfrac{1}{2}\cdot2=1\)
b: \(=\dfrac{5}{16}\cdot\dfrac{17}{15}\cdot\dfrac{8}{17}=\dfrac{5}{16}\cdot\dfrac{8}{15}=\dfrac{40}{240}=\dfrac{1}{6}\)
c: \(=\dfrac{4}{13}\left(\dfrac{2}{7}+\dfrac{5}{7}\right)-\dfrac{3}{26}=\dfrac{4}{13}-\dfrac{3}{26}=\dfrac{5}{26}\)
c: \(=\dfrac{3}{4}\left(\dfrac{6}{11}+\dfrac{5}{11}\right)-\dfrac{1}{5}=\dfrac{3}{4}-\dfrac{1}{5}=\dfrac{11}{20}\)
1.tìm số xyz biết \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25},vàx-y+z=4\)
2. biết \(a^2+ab+\dfrac{b^2}{3}=25;c^2+\dfrac{b^2}{3}=9;a^2+ac+c^2=16\) và a≠ 0; c ≠ 0; a ≠ -0. c/m rằng \(\dfrac{2c}{a}=\dfrac{b+c}{a+c}\)
Ta có:\(\dfrac{x^2}{4}=\dfrac{x}{2};\dfrac{y^2}{9}=\dfrac{y}{3};\dfrac{z^2}{25}=\dfrac{z}{5}\)
Aps dụng tính chất dãy tỉ số bằn nhau:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)
=>\(\dfrac{x}{2}=1=>x=2\)
\(\dfrac{y}{3}=1=>y=3\)
\(\dfrac{z}{5}=1=>z=5\)
Vậy x=2, y=3, z=5
Ta có : \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)
\(\Leftrightarrow x=2;y=3;z=5\)
2/ Tìm y:
y + \(\dfrac{1}{3}\) x 4 = 12 \(\dfrac{2}{5}\) + y = \(\dfrac{12}{35}\) x \(\dfrac{14}{9}\)
\(y=12-\left(\dfrac{1}{3}\times4\right)=12-\dfrac{4}{3}=\dfrac{32}{3}\)
\(y=\left(\dfrac{12}{35}\times\dfrac{14}{9}\right)-\dfrac{2}{5}=\dfrac{8}{15}-\dfrac{2}{5}=\dfrac{2}{15}\)
a) \(y+\dfrac{1}{3}\times4=12\)
\(y+\dfrac{1}{3}=12:4\)
\(y+\dfrac{1}{3}=3\)
\(y=3-\dfrac{1}{3}\)
\(y=\dfrac{8}{3}\)
b) \(\dfrac{2}{5}+y=\dfrac{12}{35}\times\dfrac{14}{9}\)
\(\dfrac{2}{5}+y=\dfrac{8}{15}\)
\(y=\dfrac{8}{15}-\dfrac{2}{5}\)
\(y=\dfrac{2}{15}\)