|x1-x2|=2-m
Cho Phương trình : x1 + x2 = 2(m+4)
x1 . x2 = -m2 - 8
a/ tìm x12 + x22
b/ tìm m để A= x12 + x22 - x1 - x2
c/ tìm m để B = x12 + x22 - x1 . x2 đạt GTLN
Cho x2−2(m−1)x+(m+1)2=0x2−2(m−1)x+(m+1)2=0 có 2 nghiệm x1, x2 t/m x1+x2≤4x1+x2≤4. Tìm MAX, MIN của P=x31+x32+x1.x2(3x1+3x2)+8x1.x2
cho pt x^2-2mx+m^2-m-1=0 timg m để x1;x2 thỏa mãn x1(x1+2)+x2(x2+2)=10
\(x^2-2mx+m^2-m-1=0\)(1)
có \(\Delta=\left(-2m\right)^2-4.\left(m^2-m-1\right)=4m^2-4m^2+4m+4\)
=\(4m+4\)
để pt (1) có nghiệm x1,x2 khi \(\Delta\ge0< =>4m+4\ge0< =>m\ge-1\)
theo hệ vi ét ta có \(\left\{{}\begin{matrix}x1+x2=2m\\x1.x2=m^2-m-1\end{matrix}\right.\)
có \(x1\left(x1+2\right)+x2\left(x2+2\right)=10< =>x1^2+2x1+x2^2+2x2=10\)
<=>\(\left(x1^2+x2^2\right)+2.\left(x1+x2\right)=10< =>\left[\left(x1+x2\right)^2-2x1x2\right]+2.2m=10\)
<=>\(\left(2m\right)^2-2.\left(m^2-m-1\right)+4m=10< =>4m^2-2m^2+2m+2+4m-10=0\)
<=>\(2m^2+6m-8=0\)
\(\Delta1=6^2-4\left(-8\right).2=100>0\)
=>m1=\(\dfrac{-6+\sqrt{100}}{2.2}=1\left(TM\right)\)
m2=\(\dfrac{-6-\sqrt{100}}{2.2}=-4\)(loại)
vậy m=1 thì pt (1) có nghiệm x1, x2 thỏa mãn x1(x1+2)+x2(x2+2)=10
tìm m để phương trình x2−(m−1)x−2=0x2−(m−1)x−2=0có 2 nghiệm phân biệt x1 và x2 (x1>x2) thỏa mãn |2x1|−|x2|=2+x1
Phương trình đã cho có hai nghiệm phân biệt khi
\(\Delta'=\left(m+1\right)^2-\left(m^2+2\right)=2m-1>0\Leftrightarrow m>\dfrac{1}{2}\)
Theo định lí Viet: \(x_1+x_2=2m+2;x_1x_2=m^2+2\)
Khi đó \(x_1^3+x_2^3=2x_1x_2\left(x_1+x_2\right)\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-5x_1x_2\left(x_1+x_2\right)=0\)
\(\Leftrightarrow\left(2m+2\right)^3-5\left(m^2+2\right)\left(2m+2\right)=0\)
\(\Leftrightarrow m^3-7m^2-2m+6=0\)
\(\Leftrightarrow\left(m+1\right)\left(m^2-8m+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-1\left(l\right)\\m=4\pm\sqrt{10}\left(tm\right)\end{matrix}\right.\)
cho pt x^2-5x+m-2=0
Tìm m để pt có nghiệm thỏa mãn
a,x1=2x2
b,x1^+x2^2=6
c,x1^2-x2^2=5
d,|x1-x2|=14
a: \(\Delta=\left(-5\right)^2-4\cdot1\cdot\left(m-2\right)=25-4m+8=-4m+33\)
Để phương trình có nghiệm thì -4m+33>=0
=>-4m>=-33
hay m<=33/4
Theo đề, ta có: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1-2x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{5}{3}\\x_1=\dfrac{10}{3}\end{matrix}\right.\)
Ta có: \(x_1x_2=m-2\)
=>m-2=50/9
hay m=68/9
b: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2=6\)
\(\Leftrightarrow5^2-2\left(m-2\right)=6\)
=>25-2(m-2)=6
=>2(m-2)=19
=>m-2=19/2
hay m=23/2
d: \(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=14\)
\(\Leftrightarrow25-4\left(m-2\right)=196\)
=>4(m-2)=-171
=>m-1=-171/4
hay m=-163/4
8.1. Tìm m để pt: x2 - (m+9)x - 7 = 0 có 2 nghiệm phân biệt x1, x2 thỏa mãn x1<x2 và |x1| - |x2| =16.
8.2. Tìm m để pt: x2 + (m+12)x - 11 =0 có 2 nghiệm phân biệt x1, x2 thỏa mãn x1>x2 và |x1| - |x2| =15.
8.1/ Để phương trình có 2 nghiệm phân biệt thì \(\Delta=\left(m-9\right)^2-4.\left(-7\right)=m^2-18m+109>0\Leftrightarrow m\in R\)
Theo định lý viete, ta có: \(\left\{{}\begin{matrix}x_1+x_2=m+9\\x_1x_2=-7< 0\end{matrix}\right.\)
\(\left|x_1\right|-\left|x_2\right|=16\Leftrightarrow x_1^2+x_2^2-2\left|x_1x_2\right|=256\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-2\left|x_1x_2\right|=256\Leftrightarrow\left(m+9\right)^2=256-2\left(-7\right)-2\left|-7\right|=256\)
\(\Leftrightarrow\left(m+9\right)^2=256\Leftrightarrow\left[{}\begin{matrix}m=7\\m=-25\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}m=7\\m=-25\end{matrix}\right.\)
cho pt 2x^2-(m+1)x+m-1=0
Tìm m để pt có 2 ngh phân biệt x1, x2 thỏa x1-x2=x1.x2
Lời giải:
Để pt có 2 nghiệm phân biệt $x_1,x_2$ thì:
$\Delta=(m+1)^2+8(m-1)>0$
$\Leftrightarrow m^2+10m-7>0(*)$
Áp dụng định lý Viet:
$x_1+x_2=\frac{m+1}{2}$
$x_1x_2=\frac{m-1}{2}$
Khi đó:
$x_1-x_2=x_1x_2$
$\Rightarrow (x_1-x_2)^2=(x_1x_2)^2$
$\Leftrightarrow (x_1+x_2)^2-4x_1x_2=(x_1x_2)^2$
$\Leftrightarrow (\frac{m+1}{2})^2-2(m-1)=(\frac{m-1}{2})^2$
$\Leftrightarrow m=2$ (thỏa mãn $(*)$)
Vậy......
Tìm giá trị của m để phương trình x 2 – 2(m – 2)x + 2m – 5 = 0 hai nghiệm x 1 ; x 2 thỏa mãn x 1 ( 1 − x 2 ) + x 2 ( 2 – x 1 ) < 4
A. m > 1
B. m < 0
C. m > 2
D. m < 3
Phương trình x 2 – 2(m – 2)x + 2m – 5 = 0 có a = 1 ≠ 0 và
∆ ' = ( m − 2 ) 2 – 2 m + 5 = m 2 – 6 m + 9 = ( m – 3 ) 2 ≥ 0 ; ∀ m
Nên phương trình luôn có hai nghiệm x 1 ; x 2
Theo hệ thức Vi-ét ta có x 1 + x 2 = 2 m − 4 x 1 . x 2 = 2 m − 5
X é t x 1 ( 1 − x 2 ) + x 2 ( 2 – x 1 ) < 4 ⇔ ( x 1 + x 2 ) – 2 x 1 . x 2 − 4 < 0
⇔ 2m – 4 – 2(2m – 5) – 4 < 0 ⇔ −2m + 2 < 0 m > 1
Vậy m > 1 là giá trị cần tìm
Đáp án: A
Tìm tham số m để phương trình x^2-2(m+1)x+m^2+2m=0 có 2 nghiệm X1,X2 (X1<X2) thỏa mãn |X1|=3|x2|
a=1
b=-2(m+1)
c=m2+2m
△'=(m+1)2-(m2+2m)1=m2+2m+1-m2-2m=1>0 ∀ m
=> pt luôn có 2n0 phân biệt ∀m