Chứng minh:
cos4 x-cos4(\(\frac{\pi}{2}\)-x)=2cos2(\(\pi\)+x)-1
Chứng minh rằng:
a) \(\sin x - \cos x = \sqrt 2 \sin \left( {x - \frac{\pi }{4}} \right)\);
b) \(\tan \left( {\frac{\pi }{4} - x} \right) = \frac{{1 - \tan x}}{{1 + \tan x}}\;\left( {x \ne \frac{\pi }{2} + k\pi ,\;x \ne \frac{{3\pi }}{4} + k\pi ,\;k \in \mathbb{Z}} \right)\;\).
a) Ta có:
\(\sqrt 2 \sin \left( {x - \frac{\pi }{4}} \right) = \sqrt 2 \left( {\sin x\cos \frac{\pi }{4} + \cos x\sin \frac{\pi }{4}} \right) = \sqrt 2 \left( {\sin x.\frac{{\sqrt 2 }}{2} + \cos x.\frac{{\sqrt 2 }}{2}} \right) = \sin x + \cos x\)
b) Ta có:
\(\tan \left( {\frac{\pi }{4} - x} \right) = \frac{{\tan \frac{\pi }{4} - \tan x}}{{1 + \tan \frac{\pi }{4}\tan x}} = \frac{{1 - \tan x}}{{1 + \tan x}}\;\)
1.\(\)chứng minh hệ thức: \(\dfrac{sin\alpha+sin3\alpha+sin5\alpha}{cos\alpha+cos3\alpha+cos5\alpha}=tan3\alpha\)
2.rút gọn biểu thức: \(\dfrac{1+sin4\alpha-cos4\alpha}{1+cos4\alpha+sin4\alpha}\)
3. Tính \(96\sqrt{3}sin\dfrac{\pi}{48}cos\dfrac{\pi}{48}cos\dfrac{\pi}{24}cos\dfrac{\pi}{12}cos\dfrac{\pi}{6}\)
4. chứng minh rằng trong một △ABC ta có:
tanA + tanB + tanC = tanA tanB tanC (A,B,C cùng khác \(\dfrac{\pi}{2}\))
\(\dfrac{sina+sin5a+sin3a}{cosa+cos5a+cos3a}=\dfrac{2sin3a.cos2a+sin3a}{2cos3a.cos2a+cos3a}=\dfrac{sin3a\left(2cos2a+1\right)}{cos3a\left(2cos2a+1\right)}=\dfrac{sin3a}{cos3a}=tan3a\)
\(\dfrac{1+sin4a-cos4a}{1+sin4a+cos4a}=\dfrac{1+2sin2a.cos2a-\left(1-2sin^22a\right)}{1+2sin2a.cos2a+2cos^22a-1}=\dfrac{2sin2a\left(sin2a+cos2a\right)}{2cos2a\left(sin2a+cos2a\right)}=\dfrac{sin2a}{cos2a}=tan2a\)
\(96\sqrt{3}sin\left(\dfrac{\pi}{48}\right)cos\left(\dfrac{\pi}{48}\right)cos\left(\dfrac{\pi}{24}\right)cos\left(\dfrac{\pi}{12}\right)cos\left(\dfrac{\pi}{6}\right)=48\sqrt{3}sin\left(\dfrac{\pi}{24}\right)cos\left(\dfrac{\pi}{24}\right)cos\left(\dfrac{\pi}{12}\right)cos\left(\dfrac{\pi}{6}\right)\)
\(=24\sqrt{3}sin\left(\dfrac{\pi}{12}\right)cos\left(\dfrac{\pi}{12}\right)cos\left(\dfrac{\pi}{6}\right)=12\sqrt{3}sin\left(\dfrac{\pi}{6}\right)cos\left(\dfrac{\pi}{6}\right)\)
\(=6\sqrt{3}sin\left(\dfrac{\pi}{3}\right)=6\sqrt{3}.\dfrac{\sqrt{3}}{2}=9\)
\(A+B+C=\pi\Rightarrow A+B=\pi-C\Rightarrow tan\left(A+B\right)=tan\left(\pi-C\right)\)
\(\Rightarrow\dfrac{tanA+tanB}{1-tanA.tanB}=-tanC\Rightarrow tanA+tanB=-tanC+tanA.tanB.tanC\)
\(\Rightarrow tanA+tanB+tanC=tanA.tanB.tanC\)
Chứng minh đẳng thức
\(2sin\left(\frac{\pi}{2}+x\right)+sin\left(3\pi-x\right)+sin\left(\frac{3\pi}{2}+x\right)+cos\left(\frac{\pi}{2}+x\right)=cosx\)
\(2sin\left(\frac{\pi}{2}+x\right)+sin\left(3\pi-x\right)+sin\left(\frac{3\pi}{2}+x\right)+cos\left(\frac{\pi}{2}+x\right)\)
\(=2cosx+sinx-cosx-sinx\)
\(=cosx\)
chứng minh:
\(\dfrac{2cos2\alpha-sin4\alpha}{2cos2\alpha+sin4\alpha}=tan^2\left(\dfrac{\pi}{4}-\alpha\right)\)
1. Chứng minh rằng: \(\frac{1-cosx+cos2x}{sin2x-sinx}=cotx\)
2. Chứng minh biểu thức sau không phụ thuộc \(x\): \(A=sin\left(\frac{\pi}{4}+x\right)-cos\left(\frac{\pi}{4}-x\right)\), nếu \(cosx=\frac{1}{2}\) với \(\frac{3\pi}{2}< x< 2\pi\)
\(\frac{1-cosx+cos2x}{sin2x-sinx}=\frac{1-cosx+2cos^2x-1}{2sinx.cosx-sinx}=\frac{cosx\left(2cosx-1\right)}{sinx\left(2cosx-1\right)}=\frac{cosx}{sinx}=cotx\)
\(A=sin\left(\frac{\pi}{4}+x\right)-sin\left(\frac{\pi}{2}-\frac{\pi}{4}+x\right)=sin\left(\frac{\pi}{4}+x\right)-sin\left(\frac{\pi}{4}+x\right)=0\)
Chứng minh rằng
\(\tan\left(x\right)\tan\left(x+\frac{\pi}{3}\right)+\tan\left(x+\frac{\pi}{3}\right)\tan\left(x+\frac{2\pi}{3}\right)+\tan\left(x\right)\tan\left(x+\frac{2\pi}{3}\right)=3\)
Hãy gộp các họ nghiệm sau:
1) \(\left[{}\begin{matrix}x=k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)
2) \(\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{-\pi}{2}+k2\pi\end{matrix}\right.\)
3) \(\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{2}+k\pi\\x=\frac{\pi}{6}+k2\pi\end{matrix}\right.\)
1/ \(x=k\pi\)
2/ \(x=\frac{\pi}{2}+k\pi\)
3/ \(\left[{}\begin{matrix}x=\frac{k\pi}{2}\\x=\frac{\pi}{6}+k2\pi\end{matrix}\right.\)
2 họ nghiệm này ko thể gộp được nữa
bài 1: tính các giá trị lượng giác còn lại biết:
1) sin x=\(\frac{3}{5}\)với 0<x<\(\frac{\pi}{2}\)
2) cos x=\(\frac{5}{13}\)với\(\frac{3\pi}{2}\)<x<2π
3) cos x=\(-\frac{2}{5}với\frac{\pi}{2}< x< \pi\)
4) tan x=-2 với \(\frac{\pi}{2}< x< \pi\)
5) sin x=\(-\frac{1}{3}với\) \(\pi< x< \frac{3\pi}{2}\)
6) cot x=\(\frac{1}{2}với\) 0<x<\(\frac{\pi}{2}\)
Nghiệm của pt : \(sin^2x+\left(\sqrt{3}-1\right)sinxcosx-\sqrt{3}cos^2x=0\) là :
A. \(x=\frac{\Pi}{6}+k\Pi;x=\frac{\Pi}{3}+k\Pi\)
B. \(x=\frac{\Pi}{4}+k2\Pi;x=-\frac{\Pi}{3}+k2\Pi;k\in Z\)
C. \(x=\frac{\Pi}{2}+k\Pi;x=-\frac{\Pi}{6}+k\Pi\)
D. \(x=\frac{\Pi}{4}+k\Pi;x=-\frac{\Pi}{3}+k\Pi;k\in Z\)
Nhận thấy \(cosx-0\) không phải nghiệm, chia 2 vế cho \(cos^2x\)
\(tan^2x+\left(\sqrt{3}-1\right)tanx-\sqrt{3}=0\)
\(\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=-\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)
Nghiệm của pt : \(sin^2x+\sqrt{3}sinxcosx=1\) là :
A . \(x=\frac{\Pi}{2}+k\Pi;x=\frac{\Pi}{6}+k\Pi\)
B . \(x=\frac{\Pi}{2}+k2\Pi;x=\frac{\Pi}{6}+k2\Pi\)
C . \(x=-\frac{\Pi}{6}+k2\Pi;x=-\frac{5\Pi}{6}+k2\Pi\)
D . \(x=\frac{\Pi}{6}+k2\Pi;x=\frac{5\Pi}{6}+k2\Pi\)
Trình bày bài giải chi tiết rồi mới chọn đáp án nha các bạn .
HELP ME !!!!!!!