Tìm x nguyên dương để P = \(\dfrac{x+1}{x-1}\)nguyên
Bài 1: Cho biểu thức \(A=\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}-\dfrac{1}{x-2}\)
a, Rút gọn biểu thức A
b, Tìm x biết A = -3
c, Tìm x nguyên để A đạt giá trị nguyên dương
\(a,\)Với \(x\ne-3,x\ne2\) ta có :
\(A=\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}-\dfrac{1}{x-2}\)
\(=\dfrac{x^2-4}{\left(x+3\right)\left(x-2\right)}-\dfrac{5}{\left(x+3\right)\left(x-2\right)}-\dfrac{x+3}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{x-4}{x-2}\)
\(b,\) \(A=-3\Leftrightarrow\dfrac{x-4}{x-2}=-3\)
\(\Leftrightarrow x-4=-3\left(x-2\right)\)
\(\Leftrightarrow x-4+3x-6=0\)
\(\Leftrightarrow4x=10\Rightarrow x=\dfrac{10}{4}=\dfrac{5}{2}\)
c) Để A đạt giá trị nguyên dương thì \(\left\{{}\begin{matrix}x-4⋮x-2\\x-2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2⋮x-2\\x>2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2\inƯ\left(-2\right)\\x>2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2\in\left\{1;-1;2;-2\right\}\\x>2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{3;1;4;0\right\}\\x>2\end{matrix}\right.\Leftrightarrow x=4\)
Vậy: Để A là số nguyên dương thì x=4
Tìm số nguyên dương x để:
1+\(\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+3+...+x}=2\)
Lời giải:
\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+x}=1+\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+....+\frac{1}{\frac{x(x+1)}{2}}\)
\(=1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x(x+1)}\right)\)
\(=1+2\left(\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{(x+1)-x}{x(x+1)}\right)\)
\(=1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)\)
\(=1+2(\frac{1}{2}-\frac{1}{x+1})=2-\frac{2}{x+1}\)
Ta có: $2-\frac{2}{x+1}=2$
$\Leftrightarrow \frac{2}{x+1}=0$ (vô lý)
Vậy không tồn tại $x$ nguyên dương thỏa mãn.
Tìm x nguyên dương để P = 2A:B đạt giá trị nhỏ nhất biết \(A=\dfrac{\sqrt{x}+1}{x-9}\) và \(B=\dfrac{2}{\sqrt{x}-3}\)
Lời giải:
ĐKXĐ: $x\geq 0; x\neq 9$
\(P=2A:B=\frac{2(\sqrt{x}+1)}{x-9}: \frac{2}{\sqrt{x}-3}=\frac{2(\sqrt{x}+1)}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{2}=\frac{\sqrt{x}+1}{\sqrt{x}+3}\)
\(P=1-\frac{2}{\sqrt{x}+3}\)
Để $P$ nhỏ nhất thì $\frac{2}{\sqrt{x}+3}$ lớn nhất
$\Leftrightarrow \sqrt{x}+3$ nhỏ nhất
Với $x$ nguyên dương, $\sqrt{x}+3$ nhỏ nhất bằng $\sqrt{1}+3=4$ khi $x=1$
$\Rightarrow P_{\min}=\frac{\sqrt{x}+1}{\sqrt{x}+3}=\frac{1+1}{1+3}=\frac{1}{2}$
\(A=\dfrac{3\sqrt{x}-1}{\sqrt{x}+2}\). Tìm x để A nhận giá trị nguyên dương
Để A là số nguyên dương thì \(\left\{{}\begin{matrix}3\sqrt{x}+6-7⋮\sqrt{x}+2\\x>\dfrac{1}{9}\end{matrix}\right.\Leftrightarrow\sqrt{x}+2=7\)
hay x=25
a) Tìm tất cả các tham số m nguyên để \(F\left(x\right)=\dfrac{7}{x^2+\dfrac{1}{2}m}\) có nghiệm x nguyên và F(x) là số nguyên dương.
b) Với mọi \(m\ge0\), tìm giá trị lớn nhất của F(x).
Với mọi m < 0, tìm giá trị nhỏ nhất của F(x).
Cho biểu thức
\(A=\dfrac{x+1}{x-2}+\dfrac{x-1}{x+2}+\dfrac{x^2+4x}{4-x^2}\left(x\ne\pm2\right)\)
a) Rút gọn A
b) Tính giá trị của biểu thức A khi x = 4
c) Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên dương
\(\left(\dfrac{1}{x+\sqrt{x}}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{2}{\sqrt{x}+1}\)
a) Rút gọn P. b) Tìm x để P = 1. c) Tìm x nguyên để P nguyên
\(a,P=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{2}=\dfrac{\sqrt{x}+1}{2\sqrt{x}}\\ b,P=1\Leftrightarrow\sqrt{x}+1=2\sqrt{x}\\ \Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\\ c,P=\dfrac{\sqrt{x}+1}{2\sqrt{x}}\in Z\\ \Leftrightarrow\sqrt{x}+1⋮2\sqrt{x}\\ \Leftrightarrow2\sqrt{x}+2⋮2\sqrt{x}\\ \Leftrightarrow2\sqrt{x}\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow\sqrt{x}=1\left(\sqrt{x}>0\right)\\ \Leftrightarrow x=1\)
\(\left(\dfrac{1}{x+\sqrt{x}}\dfrac{1}{\sqrt{x}+1}\right):\dfrac{2}{\sqrt{x}+1}\)
a) Rút gọn P. b) Tìm x để P = 1. c) Tìm x nguyên để P nguyên
Biểu thức thiếu dấu. Bạn coi lại.
Lời giải:
a. ĐKXĐ: $x>0$
\(P=\left(\frac{1}{\sqrt{x}(\sqrt{x}+1)}+\frac{\sqrt{x}}{\sqrt{x}(\sqrt{x}+1)}\right):\frac{2}{\sqrt{x}+1}=\frac{1+\sqrt{x}}{\sqrt{x}(\sqrt{x}+1)}.\frac{\sqrt{x}+1}{2}=\frac{\sqrt{x}+1}{2\sqrt{x}}\)
b. \(P=1\Leftrightarrow \frac{\sqrt{x}+1}{2\sqrt{x}}=1\Leftrightarrow \sqrt{x}+1=2\sqrt{x}\Leftrightarrow \sqrt{x}=1\Leftrightarrow x=1\) (tm)
c.
\(\frac{\sqrt{x}+1}{2\sqrt{x}}\in\mathbb{Z}\Rightarrow \frac{\sqrt{x}+1}{\sqrt{x}}\in\mathbb{Z}\)
\(\Leftrightarrow 1+\frac{1}{\sqrt{x}}\in\mathbb{Z}\Leftrightarrow \frac{1}{\sqrt{x}}\in\mathbb{Z}\)
Với $x$ nguyên thì \(\Rightarrow \sqrt{x}\) là ước của $1$
$\Rightarrow \sqrt{x}\in \left\{1\right\}$
$\Rightarrow x\in\left\{1\right\}$
Thử lại thấy thỏa mãn. Vậy $x=1$
A=\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)(x≥0,x≠4,x≠9)
1,Tìm x để A.\(\sqrt{x}\)=-1
2,Tìm x∈ Z để A∈Z
3, Tìm Min \(\dfrac{1}{A}\)
4,Tìm x∈N để A là số nguyên dương lớn nhất
5,Khi A+\(|A|\)=0, tìm GTLN của bth A.\(\sqrt{x}\)
1: Ta có: \(A=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}-9-\left(x-9\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
Để \(A=-\dfrac{1}{\sqrt{x}}\) thì \(x+\sqrt{x}=-\sqrt{x}+3\)
\(\Leftrightarrow x+2\sqrt{x}-3=0\)
\(\Leftrightarrow\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow x=1\left(nhận\right)\)
2: Để A nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{-1;1;2;-2;4;-4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{2;4;5;1;7\right\}\)
\(\Leftrightarrow x\in\left\{16;25;1;49\right\}\)