Gieo một con xúc xắc cân đối, đồng chất một lần. Tính xác suất xuất hiện 2 mặt chấm
Gieo 1 con xúc xắc cân đối, đồng chất một lần. Tính xác suất xuất hiện trên hai mặt chấm
\(\Omega=\left\{\left(i\right)|i=1,2,3,4,5,6\right\}\)
\(\Rightarrow n\left(\Omega\right)=6\)
Gọi \(A:``\) Xuất hiện trên hai mặt chấm\("\)
\(A=\left\{3,4,5,6\right\}\)
\(\Rightarrow n\left(A\right)=4\)
\(P\left(A\right)=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{4}{6}=\dfrac{2}{3}\)
Không gian mẫu: Ω= {1;2;3;4;5;6} →n(Ω)=6
Gọi biến cố A:" Xuất hiện trên hai mặt chấm"
A ={3;4;5;6} ➝n(A)= 4
Do đó, p(A)=\(\dfrac{n\left(A\right)}{n\left(\Omega\right)}\)=\(\dfrac{4}{6}\)=\(\dfrac{2}{3}\)
Gieo 1 con xúc xắc cân đối đồng chất. Giả sử con xúc xắc xuất hiện mặt \(b\) chấm. Tính xác suất để phương trình: \(x^2+bx+2=0\) vô nghiệm.
Δ=b^2-4*1*2=b^2-8
Để phương trình vô nghiệm thì b^2-8<0
=>-2 căn 2<b<2 căn 2
=>b=1 hoặc b=2
Gieo đồng thời 3 con xúc xắc cân đối và đồng chất. Tính xác suất của các biến cố:
a) “Tích các số chấm ở mặt xuất hiện trên ba con xúc xắc chia hết cho 3”
b) “Tổng các số chấm ở mặt xuất hiện trên ba con xúc xắc lớn hơn 4”
\(n_{\Omega}=6^3=216\)
a, A: "Tích các số chấm ở mặt xuất hiện trên 3 con xúc sắc chia hết cho 3"
\(\overline{A}\) : "Tích các số chấm ở mặt xuất hiện trên 3 con xúc sắc không chia hết cho 3"
Để xuất hiện TH xảy ra biến cố đối của A thì cả 3 con xúc sắc đều ra số chấm không chia hết cho 3, thuộc {1;2;4;5}
=> \(n_{\overline{A}}=4.4.4=64\)
Vậy, XS của biến cố A là:
\(P_{\left(A\right)}=1-P_{\overline{A}}=1-\dfrac{n_{\overline{A}}}{n_{\Omega}}=1-\dfrac{64}{216}=\dfrac{19}{27}\)
b, B: "Tổng các số chấm ở mặt xuất hiện ba con xúc sắc lớn hơn 4"
=> \(\overline{B}\) : "Tổng các số chấm ở mặt xuất hiện trên ba con xúc sắc không lớn hơn 4"
=> \(\overline{B}=\left\{\left(1;1;1\right);\left(2;1;1;\right);\left(1;2;1\right);\left(1;1;2\right)\right\}\Rightarrow n_{\overline{B}}=4\)
Vậy, XS của biến cố B là:
\(P_{\left(B\right)}=1-P_{\overline{B}}=1-\dfrac{n_{\left(B\right)}}{n_{\Omega}}=1-\dfrac{4}{216}=\dfrac{53}{54}\)
Gieo ngẫu nhiên 1 con xúc xắc cân đối đồng chất 2 lần. Tìm xác suất của biến cố: a) Lần thứ nhất xuất hiện mặt 3 chấm? b) Ít nhất 1 lần xuất hiện mặt 2 chấm? c) Tổng số chấm của 2 lần không lớn hơn 5?
Không gian mẫu: \(6.6=36\)
a.
Lần thứ nhất có 1 khả năng thỏa mãn (3 chấm)
Lần thứ 2 bất kì => có 6 khả năng
\(\Rightarrow1.6=6\) khả năng để lần thứ nhất xuất hiện mặt 3 chấm
Xác suất: \(P=\dfrac{6}{36}=\dfrac{1}{6}\)
b.
Xác suất để cả 2 lần đều ko xuất hiện mặt 2 chấm là: \(\dfrac{5}{6}.\dfrac{5}{6}=\dfrac{25}{36}\)
Xác suất để ít nhất 1 lần xuất hiện mặt 2 chấm: \(1-\dfrac{25}{36}=\dfrac{11}{36}\)
c.
Các trường hợp có số chấm thuận lợi: (1;1);(1;2);(1;3);(1;4);(2;1);(2;2);(2;3);(3;1);(3;2);(4;1) có 10 trường hợp
Xác suất: \(P=\dfrac{10}{36}=\dfrac{5}{18}\)
Gieo ngẫu nhiên 5 con xúc xắc cân đối và đồng chất 6 lần liên tiếp. Tính xác suất của biến cố A: Tổng số chấm xuất hiện của 5 con xúc xắc sau 6 lần gieo là số chia hết cho 6
Gieo 2 con xúc xắc cân đối và đồng chất. Tính xác suất của biến cố “Tích số chấm xuất hiện trên hai con xúc xắc chia hết cho 6”.
tham khảo
A là biến cố "Có 1 số chấm chia hết cho 2, 1 số chấm chia hết cho 3, và không xuất hiện 6 chấm", \(P\left(A\right)=\dfrac{4}{36}=\dfrac{1}{9}\)
B là biến cố "Có ít nhất 1 trong 2 con xúc xắc xuất hiện chấm 6", \(P\left(B\right)=\dfrac{11}{36}\)
\(A\cup B\) là biến cố "Tích số chấm xuất hiện trên 2 con xúc xắc chia hết cho 6".
A và B xung khắc nên \(P\left(A\cup B\right)=P\left(A\right)+P\left(B\right)=\dfrac{5}{12}\)Gieo một con xúc xắc cân đối, đồng chất liên tiếp hai lần. Xét các biến cố sau:
A: “Ở lần gieo thứ nhất, số chấm xuất hiện trên con xúc xắc là 1”;
B: “Ở lần gieo thứ hai, số chấm xuất hiện trên con xúc xắc là 2”
C: “Tổng số chấm xuất hiện trên con xúc xắc ở hai lần gieo là 8”
D: “Tổng số chấm xuất hiện trên con xúc xắc ở hai lần gieo là 7”.
Chứng tỏ rằng các cặp biến cố A và C; B và C, C và D không độc lập.
Không gian mẫu là tập hợp số chấm xuất hiện khi gieo con xúc xắc hai lần liên tiếp khi đó \(n\left( \Omega \right) = 6.6 = 36\)
A = {(1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6)} \( \Rightarrow P\left( A \right) = \frac{6}{{36}} = \frac{1}{6}\)
B = {(1; 2); (2; 2); (3; 2); (4; 2); (5; 2); (6; 2)} \( \Rightarrow P\left( B \right) = \frac{6}{{36}} = \frac{1}{6}\)
C = {(2; 6); (3; 5); (4; 4); (5; 3); (6; 2)} \( \Rightarrow P\left( C \right) = \frac{5}{{36}}\)
D = {(1; 6); (2; 5); (3; 4); (4; 3); (5; 2); (6; 1)} \( \Rightarrow P\left( D \right) = \frac{6}{{36}} = \frac{1}{6}\)
Do đó
\(P\left( A \right).P\left( C \right) = \frac{1}{6}.\frac{5}{{36}} = \frac{5}{{216}};P\left( B \right).P\left( C \right) = \frac{1}{6}.\frac{5}{{36}} = \frac{5}{{216}};P\left( C \right).P\left( D \right) = \frac{5}{{36}}.\frac{1}{6} = \frac{5}{{216}}\)
Mặt khác
AC = \(\emptyset \Rightarrow P\left( {AC} \right) = 0\)
BC = {(6; 2)} \( \Rightarrow P\left( {BC} \right) = \frac{1}{{36}}\)
CD = \(\emptyset \Rightarrow P\left( {CD} \right) = 0\)
Khi đó \(P\left( {AC} \right) \ne P\left( A \right).P\left( C \right);P\left( {BC} \right) \ne P\left( B \right).P\left( C \right);P\left( {CD} \right) \ne P\left( C \right).P\left( D \right)\)
Vậy các cặp biến cố A và C; B và C, C và D không độc lập.
Gieo lần lượt hai con xúc xắc cân đối. Tính xác suất để ít nhất một con xúc xắc xuất hiện mặt 6 châm.
Gọi F là biến cố “ít nhất một con xúc xắc xuất hiện mặt 6 chấm”.
Biến cố \(\overline F \) là “ Cả hai con xúc xắc đều không xuất hiện mặt 6 chấm”.
Ta có \(n\left( \Omega \right) = 36\) và \(\overline F = \left\{ {\left( {i;j} \right),1 \le i;j \le 5} \right\}\) do đó \(n\left( {\overline F } \right) = 25\).
Vậy \(P\left( {\overline F } \right) = \frac{{25}}{{36}}\) nên \(P\left( F \right) = 1 - \frac{{25}}{{36}} = \frac{{11}}{{36}}\).
Gieo một con xúc xắc cân đối. Hãy so sánh xác suất của các biến cố sau:
A: “Mặt xuất hiện có 2 chấm”
B: “Mặt xuất hiện có 3 chấm”
Biến cố A có xác suất xảy ra là \(\frac{1}{6}\)và biến cố B có xác suất xảy ra là \(\frac{1}{6}\)