Thu gọn (x^2+3x+1)^2+(3x-1)-2*(x^2+3x+1)(3x-1)
thu gọn các biểu thức sau:
a) 2(x-1)(x+1)+(x-1)^2+(x+1)^2
b) (x-y+1)2+(1-y)2+2(x-y+1)(y-1)
c) (3x+1)2-2(3x+1)(3x+5)+(5x+5)2
\(a,2\left(x-1\right)\left(x+1\right)+\left(x-1\right)^2+\left(x+1\right)^2\)
\(=2\left(x^2-1\right)+x^2-2x+1+x^2+2x+1\)
\(=2x^2-2+2x^2+2=4x^2\)
\(b,\left(x-y+1\right)^2+\left(1-y\right)^2+2\left(x-y+1\right)\left(y-1\right)\)
\(=\left(x-y+1\right)^2+2\left(x-y+1\right)\left(y-1\right)+\left(y-1\right)^2\)
\(=\left[\left(x-y+1\right)+\left(y-1\right)\right]^2\)
\(=\left[x-y+1+y-1\right]^2=x^2\)
đề cuối phải sửa cái cuối thành \(\left(3x+5\right)^2\)
\(c,\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)
\(=\left[\left(3x+1\right)-\left(3x+5\right)\right]^2=\left[3x+1-3x-5\right]^2=16\)
Bài 1: Thu gọn :
(x+1).(x+2)-3x.(x-4)
Bài 2: Tìm x:
(3x-4).(x-2)=3x.(x-9)
Bài 3: Chứng minh biểu thức không phụ thuộc vào giá trị của biến:
-3x.(x-4).(x-2)-x^2.(-3x+18)+24x-25
1) \(\left(x+1\right)\left(x+2\right)-3x\left(x-4\right)=x^2+3x+2-3x^2+12x=-2x^2+15x+2\)
2) \(\left(3x-4\right)\left(x-2\right)=3x\left(x-9\right)\)
\(\Leftrightarrow3x^2-10x+8=3x^2-27x\)
\(\Leftrightarrow17x=-8\Leftrightarrow x=-\dfrac{8}{17}\)
3) \(-3\left(x-4\right)\left(x-2\right)-x^2\left(-3x+18\right)+24x-25\)
\(=-3x^3+6x^2+12x^2-24x+3x^3-18x^2+24x-25=-25\)
Thu gọn biểu thức sau:
a) (x+1).(x+2).(x2+4).(x-1).(x2+1).(x-2)
b) (3x+1)2+(2-3x).(2+3x)
a) (x2-1)(x2+4)(x2-4)=(x2-1)(x4-16)
b) 9x2+6x+1+4-9x2= 6x+5
Bài 3. Thu gọn các biểu thức sau:
a) x(x + 1) – 2x(x – 2)
b) -3x( x – 1) + (x – 1)(x + 1)
c) (3x – 2)(3x + 2) – (x – 1)(x + 2)
a) x(x + 1) - 2x(x - 2) = x2 + x - 2x2 + 4x = -x2 + 5x
b) -3x(x - 1) + (x - 1)(x + 1) = -3x2 + 3x + x2 - 1 = -2x2 + 3x - 1
c) (3x - 2)(3x + 2) - (x - 1)(x + 2) = 9x2 - 4 - x2 - x + 2
= 8x2 - x - 2
a, x(x+1) - 2x(x -2 )
= x2 +x - 2x2 + 4x = -x2 + 5x
b, -3x( x - 1 ) + ( x -1 ) ( x+1 )
= -3x2 + 3x + x2 -1
= -2x2 + 3x -1
c, ( 3x-2 ) ( 3x + 2 ) - ( x -1 ) ( x +2 )
= 9x2 - 4 - ( x2 + 2x -x -2 )
= 9x2 -4 - x2 -2x + x + 2
= 8x2 -x -2
*Sxl
Trả lời:
a) x ( x + 1 ) - 2x ( x - 2 ) = x2 + x - 2x2 + 4x = - x2 + 5x
b) - 3x ( x - 1 ) + ( x - 1 ) ( x + 1 ) = - 3x2 + 3x + x2 - 1 = - 2x2 + 3x - 1
c) ( 3x - 2 ) ( 3x + 2 ) - ( x - 1 ) ( x + 2 ) = 9x2 - 4 - ( x2 + 2x - x - 2 ) = 9x2 - 4 - x2 - 2x + x + 2 = 8x2 - x - 2
Thu gọn đa thức sau
Q=x^2 + 2xy - 3x^3 + 2y^3+3x^3-y^3
P=1/3x^y+ xy^2-xy+1/2xy^2-5xy-1/3x^2y
\(Q=x^2+2xy+\left(-3x^3+3x^3\right)+\left(2y^3-y^3\right)=x^2+2xy+y^3\)
\(P=\left(\dfrac{1}{3}x^2y-\dfrac{1}{3}x^2y\right)+\left(xy^2+\dfrac{1}{2}xy^2\right)-\left(xy+5xy\right)=\dfrac{3}{2}xy^2-6xy\)
1. Thu gọn biểu thức
a) (x-3) ² + 3x (x-5)
b) (3x+2) ² - (x+3) (x-3)
2. Tìm x biết a) (x+4) ² - (x+2) (x-2)=5
b) (3x-1) ² _ (2x-3) (4x+1)= 5+x ²
1.
a) \(=x^2-6x+9+3x^2-15x=4x^2-21x+9\)
b) \(=9x^2+12x+4-x^2+9=8x^2+12x+13\)
2.
a) \(\Leftrightarrow x^2+8x+16-x^2+4-5=0\\ \Leftrightarrow8x=-15\\ \Leftrightarrow x=-\dfrac{15}{8}\)
b) \(\Leftrightarrow9x^2-6x+1-8x^2+12x-2x+3-5-x^2=0\\ \Leftrightarrow4x=1\\ \Leftrightarrow x=\dfrac{1}{4}\)
1,a,=x2−6x+8+3x2−15x=4x2−21x+8b,=9x2+12x+4−x2+9=8x2+12x+132,a,⇔x2+8x+16−x2+4=5⇔8x=−15⇔x=−158b,⇔9x2−6x+1−8x2−2x+12x+3−x2=5⇔4x=1⇔x=14
B1. Tính giá trị: A=(x+2)^2 - (x-2)^2 với x=125
B2. Thu gọn:
a, 2x.(2x-1)^2 - 3x.(x+3).(x-3) - 4x.(x+1)^2
b. (3x+1)^2 - 2.(3x+1).(3x+5) + (3x+5)^2
B3: Tìm x biết (x+2)^2 - x^2 +4=0
b1
A=(125+2)2 - (125-2)2 = 1272 - 1232 = 1000
thu gọn 4x.(x-3)-3x.(2+x)b) 2x.(5x+2)+(2x-3).(3x-1)c) (x-1)^2 -(x+2).(x-2)d) (1+2x)+2.(1+2x).(x-1)+(x-1)^2
\(a/4x\left(x-3\right)-3x\left(2+x\right)\\ =4x.x-4x.3-3x.2-3x.x\\ =4x^2-12x-6x-3x^2\\ =x^2-18x\\ b/2x\left(5x+2\right)+\left(2x-3\right)\left(3x-1\right)\\ =2x.5x+2x.2+2x.3x-2x.1-3.3x+3.1\\ =10x^2+4x+6x^2-2x-9x+3\\ =16x^2-7x+3\)
giải bài tập toán : thu gọn biểu thức :B=(x-1)(x^2-x+1).(2x+2)(3x^2++3x+3)
=> B= (x-1)(x^2-x+1).2(x+1)3(x^2+x+1)
=> B= 6(x-1)(x^2+x+1).(x+1)(x^2-x+1)
=>B =6(x^3-1)(x^3+1)
=> B 6x^6-6