Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phương
Xem chi tiết
Phùng Minh Quân
12 tháng 4 2018 lúc 16:33

Ta có : 

\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)

Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x 

Chúc bạn học tốt ~ 

dũng nguyễn đăng
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 14:16

a: Ta có: \(-x^2+4x-5\)

\(=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+4+1\right)\)

\(=-\left(x-2\right)^2-1< 0\forall x\)

Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 15:04

b: Ta có: \(x^4\ge0\forall x\)

\(3x^2\ge0\forall x\)

Do đó: \(x^4+3x^2\ge0\forall x\)

\(\Leftrightarrow x^4+3x^2+3>0\forall x\)

c: Ta có: \(\left(x^2+2x+3\right)=\left(x+1\right)^2+2>0\forall x\)

\(x^2+2x+4=\left(x+1\right)^2+3>0\forall x\)

Do đó: \(\left(x^2+2x+3\right)\left(x^2+2x+4\right)>0\forall x\)

\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3>0\forall x\)

dũng nguyễn đăng
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 15:03

b: Ta có: \(x^4\ge0\forall x\)

\(3x^2\ge0\forall x\)

Do đó: \(x^4+3x^2\ge0\forall x\)

\(\Leftrightarrow x^4+3x^2+3>0\forall x\)

c: Ta có: \(\left(x^2+2x+3\right)=\left(x+1\right)^2+2>0\forall x\)

\(x^2+2x+4=\left(x+1\right)^2+3>0\forall x\)

Do đó: \(\left(x^2+2x+3\right)\left(x^2+2x+4\right)>0\forall x\)

\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3>0\forall x\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 4 2018 lúc 8:41

Ta có: 4x –  x 2  – 5 = -( x 2  – 4x + 4) – 1 = - x - 2 2  -1

Vì  x - 2 2  ≥ 0 với mọi x nên – x - 2 2  ≤ 0 với mọi x.

Suy ra: - x - 2 2  -1 ≤ -1 với mọi x

Vậy 4x –  x 2  – 5 < 0 với mọi x.(đpcm)

Thông Đỗ
Xem chi tiết
Trương Ngọc Anh Tuấn
Xem chi tiết
Kwalla
Xem chi tiết
Toru
24 tháng 9 2023 lúc 22:59

\(x^2-5x+7\)

\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2-\dfrac{25}{4}+7\)

\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\)

Ta thấy: \(\left(x-\dfrac{5}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)

hay \(x^2-5x+7>0\forall x\).

Vậy ...

#\(Toru\)

fcfgđsfđ
Xem chi tiết
HT.Phong (9A5)
10 tháng 8 2023 lúc 8:45

Ta có:

\(x^2-x+1\)

\(=x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Mà: \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\) và \(\dfrac{3}{4}>0\)

Nên: \(x^2-x+1>0\)

Gấuu
10 tháng 8 2023 lúc 8:46

\(x^2-x+1\)

\(=x^2-\dfrac{1}{2}.x-\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=x\left(x-\dfrac{1}{2}\right)-\dfrac{1}{2}\left(x-\dfrac{1}{2}\right)+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)\left(x-\dfrac{1}{2}\right)+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) với mọi x ( đpcm )

\(x^2-x+1=x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\\ Mà:\left(x-\dfrac{1}{2}\right)^2>0\forall x\in R\\ Vậy:\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\in R\\ Vậy:x^2-x+1>0\forall x\in R\)

Hà Dương
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
2 tháng 10 2017 lúc 13:45

Câu a :

\(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2\ge\dfrac{3}{4}\)

Vậy biểu thức trên luôn lớn hơn 0 với mọi x

Linh_Windy
2 tháng 10 2017 lúc 18:30

Làm Full cho you nhé,bạn kia sai r:

\(linh_1=x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\left(đpcm\right)\)

\(linh_2=-4x^2-4x-2=-1\left(4x^2+4x+2\right)=-1\left(4x^2+4x+1+1\right)=-1\left(4x^2+4x+1\right)-1=-1\left(2x+1\right)^2-1< 0\left(đpcm\right)\)