tính
a, A= 2+2^2+2^3+....+2^10
b, B= 2+2^2+2^3+....+2^n
tính
a)[1/6+4}x3/10
b)(1/8-1/9)x3/2
\(\left(\dfrac{1}{6}+4\right)\times\dfrac{3}{10}=\left(\dfrac{1}{6}+\dfrac{24}{6}\right)=\dfrac{25}{6}\times\dfrac{3}{10}=\dfrac{5}{4}\)
\(\left(\dfrac{1}{8}-\dfrac{1}{9}\right)\times\dfrac{3}{2}=\left(\dfrac{9}{72}-\dfrac{8}{72}\right)\times\dfrac{3}{2}=\dfrac{1}{72}\times\dfrac{3}{2}=\dfrac{1}{48}\)
bài 1 : TÍNH
a ) 2^3 * 2^2 + 7^4 :7^2
b) 6^2 * 47 + 6^2 * 53
c ) 7^2 * 32 + 7^2 * 69 -7
Bài 2 : tìm mũ số n biêt :
a )3* 2^+6=30
b) 30-3*2^n = 24
c)40-5*2^n=20
d)3.2^n + 2^n=16
Bài 3 tìm cơ số tự nhiên , x biết
a) 3 * x ^2 = 75
b) 2 * x^3 = 54
ai giúp mk tik luôn
Bài 3:
a: Ta có: \(3x^2=75\)
\(\Leftrightarrow x^2=25\)
hay \(x\in\left\{5;-5\right\}\)
b: Ta có: \(2x^3=54\)
\(\Leftrightarrow x^3=27\)
hay x=3
Bài 2:
b: Ta có: \(30-3\cdot2^n=24\)
\(\Leftrightarrow3\cdot2^n=6\)
\(\Leftrightarrow2^n=2\)
hay n=1
c: Ta có: \(40-5\cdot2^n=20\)
\(\Leftrightarrow5\cdot2^n=20\)
\(\Leftrightarrow2^n=4\)
hay n=2
d: Ta có: \(3\cdot2^n+2^n=16\)
\(\Leftrightarrow2^n\cdot4=16\)
\(\Leftrightarrow2^n=4\)
hay n=2
bài 1 : TÍNH
a ) 2^3 * 2^2 + 7^4 :7^2
b) 6^2 * 47 + 6^2 * 53
c ) 7^2 * 32 + 7^2 * 69 -7
Bài 2 : tìm mũ số n biêt :
a )3* 2^+6=30
b) 30-3*2^n = 24
c)40-5*2^n=20
d)3.2^n + 2^n=16
Bài 3 tìm cơ số tự nhiên , x biết
a) 3 * x ^2 = 75
b) 2 * x^3 = 54
ai giúp mk tik luôn
a) \(2^3.2^2+7^4:7^2\)
\(=2^5+7^2\)
\(=32+49\)
b) \(6^2.47+6^2.53\)
\(=6^2\left(47+53\right)\)
\(=36.100\)
\(=3600\)
tính
a.\(\lim\limits_{n->+\infty}\dfrac{n^5+n^2-n+2}{\left(2n^3-1\right)\left(n^2+n+1\right)}\)
b.\(\lim\limits_{n->+\infty}\dfrac{\sqrt{n^2-n+2}}{n+2}\)
c.\(\lim\limits_{n->+\infty}\dfrac{n-\sqrt[3]{n^2-n^3}}{n^2+n+1}\)
d.\(\lim\limits_{n->+\infty}\left(n-\sqrt{n^2+n+1}\right)\)
a: \(\lim\limits_{n\rightarrow+\infty}\dfrac{n^5+n^2-n+2}{\left(2n^3-1\right)\left(n^2+n+1\right)}\)
\(=\lim\limits_{n\rightarrow+\infty}\dfrac{1+\dfrac{1}{n^3}-\dfrac{1}{n^4}+\dfrac{2}{n^5}}{\left(\dfrac{2n^3}{n^3}-\dfrac{1}{n^3}\right)\left(\dfrac{n^2+n+1}{n^2}\right)}\)
\(=\lim\limits_{n\rightarrow+\infty}\dfrac{1+\dfrac{1}{n^3}-\dfrac{1}{n^4}+\dfrac{2}{n^5}}{\left(2-\dfrac{1}{n^3}\right)\left(1+\dfrac{1}{n}+\dfrac{1}{n^2}\right)}\)
\(=\dfrac{1}{2\cdot1}=\dfrac{1}{2}\)
b: \(\lim\limits_{n\rightarrow+\infty}\dfrac{\sqrt{n^2-n+2}}{n+2}\)
\(=\lim\limits_{n\rightarrow+\infty}\dfrac{n\sqrt{1-\dfrac{1}{n}+\dfrac{2}{n^2}}}{n\left(1+\dfrac{2}{n}\right)}\)
\(=\lim\limits_{n\rightarrow+\infty}\dfrac{\sqrt{1-\dfrac{1}{n}+\dfrac{2}{n^2}}}{1+\dfrac{2}{n}}=\dfrac{\sqrt{1-0+0}}{1+0}=\dfrac{1}{1}=1\)
c: \(\lim\limits_{n\rightarrow+\infty}\dfrac{n-\sqrt[3]{n^2-n^3}}{n^2+n+1}\)
\(=\lim\limits_{n\rightarrow+\infty}\dfrac{\dfrac{n}{n^2}-\dfrac{\sqrt[3]{n^2-n^3}}{n^2}}{1+\dfrac{1}{n}+\dfrac{1}{n^2}}\)
\(=\lim\limits_{n\rightarrow+\infty}\dfrac{\dfrac{1}{n}-\sqrt[3]{\dfrac{1}{n^4}-\dfrac{1}{n^3}}}{1+\dfrac{1}{n}+\dfrac{1}{n^2}}=\dfrac{0}{1}=0\)
d: \(\lim\limits_{n\rightarrow+\infty}\left(n-\sqrt{n^2+n+1}\right)\)
\(=\lim\limits_{n\rightarrow+\infty}\dfrac{n^2-n^2-n-1}{n+\sqrt{n^2+n+1}}\)
\(=\lim\limits_{n\rightarrow+\infty}\dfrac{-n-1}{n+\sqrt{n^2+n+1}}\)
\(=\lim\limits_{n\rightarrow+\infty}\dfrac{-1-\dfrac{1}{n}}{1+\sqrt{1+\dfrac{1}{n}+\dfrac{1}{n^2}}}=-\dfrac{1}{1+1}=-\dfrac{1}{2}\)
tính
a. \(\lim\limits_{n->+\infty}\left(\sqrt[3]{n^3+n^2+n+1}-n\right)\)
b.\(\lim\limits_{n->+\infty}\left(\sqrt{n^2+n}-\sqrt{n^2-n+1}\right)\)
\(\lim\limits_{n\rightarrow+\infty}\left(\sqrt[3]{n^3+n^2+n+1}-n\right)\)
\(=\lim\limits_{n\rightarrow+\infty}\dfrac{n^3+n^2+n+1-n^3}{\sqrt[3]{\left(n^3+n^2+n+1\right)^2}+n\cdot\sqrt[3]{n^3+n^2+n+1}+n}\)
\(=\lim\limits_{n\rightarrow+\infty}\dfrac{n^2+n+1}{\sqrt[3]{\left[n^3\left(1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}\right)\right]^2}+n^2\cdot\sqrt[3]{1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}}+n^2}\)
\(=\lim\limits_{n\rightarrow+\infty}\dfrac{n^2+n+1}{n^2\cdot\sqrt[3]{\left(1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}\right)^2}+n^2\cdot\sqrt[3]{1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}}+n^2}\)
\(=\lim\limits_{n\rightarrow+\infty}\dfrac{1+\dfrac{1}{n}+\dfrac{1}{n^2}}{\sqrt[3]{\left(1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}\right)^2+\sqrt[3]{1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}}+1}}\)
\(=\dfrac{1}{1+1+1}=\dfrac{1}{3}\)
b: \(\lim\limits_{n\rightarrow+\infty}\left(\sqrt{n^2+n}-\sqrt{n^2-n+1}\right)\)
\(=\lim\limits_{n\rightarrow+\infty}\dfrac{n^2+n-n^2+n-1}{\sqrt{n^2+n}+\sqrt{n^2-n+1}}\)
\(=\lim\limits_{n\rightarrow+\infty}\dfrac{2n-1}{\sqrt{n^2+n}+\sqrt{n^2-n+1}}\)
\(=\lim\limits_{n\rightarrow+\infty}\dfrac{2-\dfrac{1}{n}}{\sqrt{1+\dfrac{1}{n}}+\sqrt{1-\dfrac{1}{n}+\dfrac{1}{n^2}}}=\dfrac{2}{\sqrt{1}+\sqrt{1}}=1\)
Cmr: a, a2+a.b+b2+1>0 b, a2+5b +2a-4ab-10b+14>0 c, 5a2+10b2-6ab-4a-2b+3>0 Giúp mình nha, thứ 7 mình học 😫😫😫
\(5a^2+10b^2-6ab-4a+2b+3\)
\(=\left(a^2-6ab+9b^2\right)+\left(4a^2-4a+1\right)+\left(b^2+2b+1\right)+1\)
\(=\left(a-3b\right)^2+\left(2a-1\right)^2+\left(b+1\right)^2+1>0\left(đpcm\right)\)
thực hiện phép tính
a. A = \(\left(-\dfrac{2}{3}x^5+\dfrac{3}{4}x^4y^3-\dfrac{4}{5}x^3y^4\right):\left(-6x^2y^2\right)\)
b.B = \(\dfrac{2a-b}{a+1}-\dfrac{a^2-2a+1}{b-2}:\dfrac{a^2-1}{b^2-4}\)
\(A=\dfrac{x^3}{9y^2}-\dfrac{1}{8}x^2y+\dfrac{2}{15}xy^2\\ B=\dfrac{2a-b}{a+1}-\dfrac{\left(a-1\right)^2}{b-2}\cdot\dfrac{\left(b-2\right)\left(b+2\right)}{\left(a-1\right)\left(a+1\right)}\\ B=\dfrac{2a-b}{a+1}-\dfrac{\left(a-1\right)\left(b+2\right)}{a+1}\\ B=\dfrac{2a-b-\left(a-1\right)\left(b+2\right)}{a+1}\\ B=\dfrac{2a-b-ab-2a+b+2}{a+1}=\dfrac{2-ab}{a+1}\)
a.4/5-(-2/7)-7/10
b,2/3-/(-4/7)-(1/2+3/8)/
4/5 - (-2/7) - 7/10
= 4/5 + 2/7 - 7/10
= 8/10 - 7/10 + 2/7
= 1/10 + 2/7
= 7/70 + 20/70
= 27/70
\(\dfrac{4}{5}-\left(-\dfrac{2}{7}\right)-\dfrac{7}{10}\)
\(=\dfrac{4}{5}+\dfrac{2}{7}-\dfrac{7}{10}\)
\(=\dfrac{8-7}{10}+\dfrac{2}{7}\)
\(=\dfrac{1}{10}+\dfrac{2}{7}\)
\(=\dfrac{7+20}{70}\)
\(=\dfrac{27}{70}\)
tìm a;b;c biết:
a/2=b/3=c/4 và a^2+3b^2-2c^2=-16
15a=10b=6c và abc +-1920
phân tích đa thức thành nhân tử
a) 36 -4a^2 + 20ab -25b^2
b) y^2 + 2xy + y^2 - xz - yz
c) a^3 + 3a^2 + 3a + 1 - 27b^2
d) 5a^2 - 10a^2b + 5ab^2 - 10 a + 10b
làm hết nha
\(a,36-4a^2+20ab-25b^2\)
\(=6^2-\left(2a-5b\right)^2=\left(6-2a+5b\right)\left(6+2a-5b\right)\)\(b,x^2+2xy+y^2-xz-yz\)
\(=\left(x+y\right)^2-z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-z\right)\)
\(d,5a^2-10a^2b+5ab^2-10a+10b\)
\(=5a^2-5a^2b-5a^2b+5ab^2-10a+10b\)
\(=5a\left(a-b\right)-5ab\left(a-b\right)-10\left(a-b\right)\)
\(=\left(a-b\right)\left(5a-5ab-10\right)\)