a) (a+1) (a+3)<0
b) (a-2) (a+3)>0
Rút gọn biểu thức :
a) \(\dfrac{a+\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\) ( a > 0 , b > 0 )
b) \(\dfrac{1-8a\sqrt{a}}{1-2\sqrt{a}}\) ( a ≥ 0 , a ≠ \(\dfrac{1}{4}\) )
c) \(\dfrac{1-a}{1+\sqrt{a}}\) ( a ≥ 0 )
d) \(\dfrac{a-3\sqrt{a}}{\sqrt{a}-3}\) ( a ≥ 0 , a ≠ 9 )
a. \(=\dfrac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}=\sqrt{a}\)
b. \(=\dfrac{1-\left(2\sqrt{a}\right)^3}{1-2\sqrt{a}}=\dfrac{\left(1-2\sqrt{a}\right)\left(1+2\sqrt{a}+4a\right)}{1-2\sqrt{a}}=1+2\sqrt{a}+4a\)
c. \(=\dfrac{1-\left(\sqrt{a}\right)^2}{1+\sqrt{a}}=\dfrac{\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)}{1+\sqrt{a}}=1-\sqrt{a}\)
d. \(=\dfrac{\sqrt{a}\left(\sqrt{a}-3\right)}{\sqrt{a}-3}=\sqrt{a}\)
Bài 10 : Xét sự thăng hàng của ba điểm A , B , C
1 / A ( −1 ; 1 ) , B ( 0 ; −1 ) , C ( 1 ; −3 )
2 / A ( 2 : 0 ) , B ( 5 : 1 ) , C ( -1 ; -1 )
3 / A ( 4 : 3 ) , B ( 2 : 0 ) .C ( 0 ; −3 )
4 / A ( −1 ; 2 ) , B ( 2 : 3 ) , C ( 4 : −1 )
Nếu a 3 / 3 > a 2 / 2 và log b ( 3 / 4 ) < log b ( 4 / 5 ) thì:
A. 0 < a < 1, b > 1 B. 0 < a < 1, 0 < b < 1
C. a > 1, b > 1 D. a > 1, 0 < b < 1
Rút gọn: a) A= √(3-√5) - √(3+√5). b) B=[√a/√(√a+1) - 1/√(a-√a)] : √(a+1)/a (với a>0, a khác 0)
`A=sqrt{3-sqrt5}-sqrt{3+sqrt5}`
`<=>sqrt2A=sqrt{6-2sqrt5}-sqrt{6+2sqrt5}`
`<=>sqrt2A=sqrt{(sqrt5-1)^2}-sqrt{(sqrt5+1)^2}`
`<=>sqrt2A=sqrt5-1-sqrt5-1=-2`
`<=>A=-sqrt2`
Câu b đề sai sai kiểu gì ý `sqrt{a+1}/a` là sao ;-;?
Cho ba tập hợp : A = { -3; -2; -1; 0; 1} , B = { -1; 0; 1; 2; 3 } , C = { -3; -2; -1; 0; 1; 2 ;3 }.
a) Tìm A ∪ B ; A ∩ B ; A ∪ C ; A ∩ C ; B ∪ C .
b) Tìm A ∩ N ; B ∩ N ; A ∪ N ; B ∪ N ; ( A ∩ B ) ∩ N ; ( A ∩ B ) ∩ Z .
Giải nhanh giúp mình với ạ
Cho a,b,c thoả mãn: 1/a+1/b+1/c=1/a+b+c(a khác 0, b khác 0, c khác 0, a+b+c khác 0)
Tính B= (a^3+b^3)(b^3+c^3)(c^3+a^3)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(\frac{ab+bc+ca+c^2}{abc\left(a+b+c\right)}\right)=0\)
\(\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\) \(\Rightarrow B=0\)
Bài 3: Xác định đường thẳng (d):
a) Đi qua 2 điểm A(-3; 0) và B(0; 2)
b) Đi qua 2 điểm A(0; 1) và B(-1; 0)
c) Đi qua 2 điểm A(0; -3) và B(1;- 1)
\(a,\) Gọi pt đường thẳng \(\left(d\right)\) là \(y=ax+b\)
Ta có \(\left(d\right)\) đi qua \(A\left(-3;0\right),B\left(0;2\right)\) nên \(\left\{{}\begin{matrix}0=-3a+b\\2=0a+b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{2}{3}\\b=2\end{matrix}\right.\)
Vậy đths là \(\left(d\right):y=\dfrac{2}{3}x+2\)
\(b,\) Gọi pt đường thẳng \(\left(d\right)\) là \(y=ax+b\)
Ta có hệ pt \(\left\{{}\begin{matrix}1=0a+b\\0=-a+b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
Vậy đths là \(\left(d\right):y=x+1\)
a,a, Gọi pt đường thẳng (d)(d) là y=ax+by=ax+b
Ta có (d)(d) đi qua A(−3;0),B(0;2)A(−3;0),B(0;2) nên {0=−3a+b2=0a+b⇔⎧⎨⎩a=23b=2{0=−3a+b2=0a+b⇔{a=23b=2
Vậy đths là (d):y=23x+2(d):y=23x+2
b,b, Gọi pt đường thẳng (d)(d) là y=ax+by=ax+b
Ta có hệ pt {
[1] Cho hai tập A = { 1; 2; 3; 5; 8 } và B = { -1; 0; 1; 5; 9 }. Tìm A ∪ B
A. A ∪ B = { 1; 5} B. { -1; 0; 1; 2; 3; 5; 8; 9 } C. A ∪ B = { -1; 0; 2; 3; 8;9 } D. A ∪ B = { 2; 3; 8 }
Ta có:
Tập hợp A:
\(A=\left\{1;2;3;5;8\right\}\)
Tập hợp B:
\(B=\left\{-1;0;1;5;9\right\}\)
Mà: \(A\cup B\)
\(\Rightarrow A\cup B=\left\{-1;0;1;2;3;5;8;9\right\}\)
⇒ Chọn B
Tim x
(a-5)(a+1) > 0
(a+1)(4-a) < 0
(a3+1)(a3+30) < 0
Bài 1: Cho a,b,c >0 t/m: abc=1
CMR: \(\dfrac{1}{a^3+b^3+1}+\dfrac{1}{b^3+c^3+1}+\dfrac{1}{c^3+a^3+1}\le1\)
Bài 2: Cho a,b,c >0 t/m a+b+c=1
CMR: \(\dfrac{1+a}{1-a}+\dfrac{1+b}{1-b}+\dfrac{1+c}{1-c}\ge6\)
Bài 3: Cho a,b,c >0 t/m abc=1
CMR: \(\dfrac{ab}{a^4+b^4+ab}+\dfrac{bc}{b^4+c^4+bc}+\dfrac{ac}{c^4+a^4+ac}\le1\)