Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
Akai Haruma
31 tháng 10 2023 lúc 13:19

Lời giải:

a. \(B=\frac{\sqrt{x}(\sqrt{x}-1)-\sqrt{x}(\sqrt{x}+1)}{(\sqrt{x}+1)(\sqrt{x}-1)}.\frac{\sqrt{x}+1}{2}=\frac{x-\sqrt{x}-x-\sqrt{x}}{(\sqrt{x}+1)(\sqrt{x}-1)}.\frac{\sqrt{x}+1}{2}=\frac{-2\sqrt{x}}{(\sqrt{x}+1)(\sqrt{x}-1)}.\frac{\sqrt{x}+1}{2}=\frac{\sqrt{x}}{1-\sqrt{x}}\)

b. $B=3\Leftrightarrow \frac{\sqrt{x}}{1-\sqrt{x}}=3$

$\Rightarrow \sqrt{x}=3(1-\sqrt{x})$

$\Leftrightarrow 4\sqrt{x}=3\Leftrightarrow x=\frac{9}{16}$ (tm) 

c.

Khi $x=3-2\sqrt{2}=(\sqrt{2}-1)^2\Rightarrow \sqrt{x}=\sqrt{2}-1$

Khi đó:

$B=\frac{\sqrt{x}}{1-\sqrt{x}}=\frac{\sqrt{2}-1}{1-(\sqrt{2}-1)}=\frac{\sqrt{2}-1}{2-\sqrt{2}}$

AK-47
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 9 2023 lúc 21:02

a: \(=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}\)

\(=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)=a-b\)

b: \(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}-\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}+\sqrt{b}\)

=0

Nguyên Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 1 2024 lúc 20:30

\(A=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}-\dfrac{1}{a-b}\left(\dfrac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}+\sqrt{ab}\right)\)

\(=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}-\dfrac{1}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\left(\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{\sqrt{a}-\sqrt{b}}+\sqrt{ab}\right)\)

\(=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}-\dfrac{a+2\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

\(=\dfrac{2\sqrt{b}-\sqrt{a}-\sqrt{b}}{\sqrt{a}-\sqrt{b}}=\dfrac{-\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

=-1

123 nhan
Xem chi tiết
2611
27 tháng 8 2023 lúc 21:57

Với `a > 0,b >= 0` có:

`Bth=[a\sqrt{b}+b]/[a-b] . \sqrt{[b(a+b-2\sqrt{ab})]/[a^2+2a\sqrt{b}+b]} . (\sqrt{a}+\sqrt{b})`

 `=[\sqrt{b}(a+\sqrt{b})]/[a-b].\sqrt{[b(\sqrt{a}-\sqrt{b})^2]/[(a+\sqrt{b})^2]}.(\sqrt{a}+\sqrt{b})`

`=[\sqrt{b}(a+\sqrt{b})|\sqrt{a}-\sqrt{b}|.\sqrt{b}.(\sqrt{a}+\sqrt{b})]/[(a-b)(a+\sqrt{b})]`

`=[b|\sqrt{a}-\sqrt{b}|]/[\sqrt{a}-\sqrt{b}]`

`={(b\text{ nếu }\sqrt{a} >= \sqrt{b}),(-b\text{ nếu }\sqrt{a} < \sqrt{b}):}`

hello hello
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 4 2021 lúc 19:56

Sửa đề: \(B=\dfrac{2}{\sqrt{6}-2}+\dfrac{2}{\sqrt{6}+2}-\dfrac{5\sqrt{6}}{2}\)

Ta có: \(B=\dfrac{2}{\sqrt{6}-2}+\dfrac{2}{\sqrt{6}+2}-\dfrac{5\sqrt{6}}{2}\)

\(=\dfrac{2\left(\sqrt{6}+2\right)+2\left(\sqrt{6}-2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}-\dfrac{5\sqrt{6}}{2}\)

\(=\dfrac{2\sqrt{6}+4+2\sqrt{6}-4}{2}-\dfrac{5\sqrt{6}}{2}\)

\(=-\dfrac{\sqrt{6}}{2}\)

An Đinh Khánh
Xem chi tiết
An Đinh Khánh
26 tháng 6 2023 lúc 15:44

câu a ở phần mẫu của cụm đầu tiên cái \(\left(\sqrt{a+\sqrt{b}}\right)^2\rightarrow\left(\sqrt{a}+\sqrt{b}\right)^2\) giúp em với ạ ( em cảm ơn )

Gia Huy
26 tháng 6 2023 lúc 16:02

a

\(=\dfrac{a-2\sqrt{ab}+b+4\sqrt{ab}}{a+2\sqrt{ab}+b-4\sqrt{ab}}.\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)^2}\\ =\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}.\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}\\ =\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2.\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)^2}\\ =\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^3}{\left(\sqrt{a}-\sqrt{b}\right)^3}\)

Đặng Thiên Bảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 12 2023 lúc 22:32

\(P=\left(\dfrac{\sqrt{a}-b}{\sqrt{a}+b}-\dfrac{\sqrt{a}+b}{\sqrt{a}-b}\right)\cdot\left(\sqrt{a^3}-\dfrac{ab^2}{\sqrt{a}}\right)\)

\(=\dfrac{\left(\sqrt{a}-b\right)^2-\left(\sqrt{a}+b\right)^2}{\left(\sqrt{a}+b\right)\left(\sqrt{a}-b\right)}\cdot\dfrac{\sqrt{a^4}-ab^2}{\sqrt{a}}\)

\(=\dfrac{\left(\sqrt{a}-b-b-\sqrt{a}\right)\left(\sqrt{a}-b+b+\sqrt{a}\right)}{\left(\sqrt{a}+b\right)\left(\sqrt{a}-b\right)}\cdot\dfrac{a^2-ab^2}{\sqrt{a}}\)

\(=\dfrac{\left(-2b\right)\cdot\left(2\sqrt{a}\right)}{a-b^2}\cdot\dfrac{a\left(a-b^2\right)}{\sqrt{a}}\)

\(=\dfrac{-4b\sqrt{a}}{\sqrt{a}}\cdot a=-4ba\)

An Đinh Khánh
Xem chi tiết
YangSu
26 tháng 6 2023 lúc 16:51

\(a,\dfrac{9-a}{\sqrt{a}+3}-\dfrac{9-6\sqrt{a}+a}{\sqrt{a}-3}\left(dkxd:a\ne9,a\ge0\right)\)

\(=\dfrac{-\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}{\sqrt{a}+3}-\dfrac{\left(3-\sqrt{a}\right)^2}{3-\sqrt{a}}\)

\(=-\left(\sqrt{a}-3\right)+\left(3-\sqrt{a}\right)\)

\(=-\sqrt{a}+3+3-\sqrt{a}\)

\(=6-2\sqrt{a}\)

\(b,\dfrac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\dfrac{a-b}{\sqrt{a}+\sqrt{b}}\left(dkxd:a\ne b,a\ge0,b\ge0\right)\)

\(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}\)

\(=\sqrt{a}-\sqrt{b}-\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}+\sqrt{b}\)

\(=0\)

HT.Phong (9A5)
26 tháng 6 2023 lúc 16:52

a) \(\dfrac{9-a}{\sqrt{a}+3}-\dfrac{9-6\sqrt{a}+a}{\sqrt{a}-3}\)

\(=\dfrac{\left(3-\sqrt{a}\right)\left(3+\sqrt{a}\right)}{\sqrt{a}+3}-\dfrac{\left(\sqrt{a}-3\right)^2}{\sqrt{a}-3}\)

\(=\dfrac{3-\sqrt{a}}{1}-\dfrac{\sqrt{a}-3}{1}\)

\(=3-\sqrt{a}-\sqrt{a}+3\)

\(=-2\sqrt{a}+6\)

b) \(\dfrac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\dfrac{a-b}{\sqrt{a}+\sqrt{b}}\)

\(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}\)

\(=\dfrac{\sqrt{a}-\sqrt{b}}{1}-\dfrac{\sqrt{a}-\sqrt{b}}{1}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}+\sqrt{b}\)

\(=0\)

Trần Phương Thảo
Xem chi tiết
Lê Ng Hải Anh
8 tháng 2 2021 lúc 9:04

ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

Ta có: \(P=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}\)

\(=\dfrac{a+2\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}.\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}.\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\)

\(=a-b\)

Thay a = 2√3 và b = √3 vào P, ta được:

P = 2√3 - √3 = √3

Vậy...

 

 

Nguyễn Lê Phước Thịnh
8 tháng 2 2021 lúc 13:01

a) Ta có: \(P=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\cdot\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}\)

\(=\dfrac{a-2\sqrt{ab}+b+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\cdot\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\dfrac{a+2\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}\cdot\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}\cdot\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\)

\(=a-b\)

b) Thay \(a=2\sqrt{3}\) và \(b=\sqrt{3}\) vào biểu thức P=a-b, ta được:

\(P=2\sqrt{3}-\sqrt{3}=\sqrt{3}\)

Vậy: Khi \(a=2\sqrt{3}\) và \(b=\sqrt{3}\) thì \(P=\sqrt{3}\)

Vinne
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 9 2021 lúc 16:02

a: ta có: \(M=\dfrac{a}{\sqrt{ab}+b}+\dfrac{b}{\sqrt{ab}-a}-\dfrac{a+b}{\sqrt{ab}}\)

\(=\dfrac{a\left(\sqrt{ab}-a\right)+b\left(\sqrt{ab}+b\right)}{\left(\sqrt{ab}+b\right)\left(\sqrt{ab}-a\right)}-\dfrac{a+b}{\sqrt{ab}}\)

\(=\dfrac{-\sqrt{ab}\left(a+b\right)+\left(a-b\right)\left(a+b\right)}{\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)\cdot\sqrt{a}\cdot\left(\sqrt{a}-\sqrt{b}\right)}-\dfrac{a+b}{\sqrt{ab}}\)

\(=\dfrac{-\sqrt{ab}\left(a+b\right)+\left(a-b\right)\left(a+b\right)}{\sqrt{ab}\left(a-b\right)}-\dfrac{a^2-b^2}{\sqrt{ab}\left(a-b\right)}\)

\(=\dfrac{-\sqrt{ab}}{\sqrt{ab}\left(a-b\right)}\)

\(=-\dfrac{1}{a-b}\)

Nguyễn Lê Phước Thịnh
7 tháng 9 2021 lúc 16:05

b: Thay \(a=\sqrt{5}+1\) và \(b=\sqrt{5}-1\) vào M, ta được:

\(M=\dfrac{-1}{\sqrt{5}+1-\sqrt{5}+1}=\dfrac{-1}{2}\)