Phân thức \(\dfrac{x^2}{2x+3}\) có giá trị bằng \(1\) tại:
A. x ∈ {-1; 3}
B. x ∈ {3}
C. x ∈ {-1-3}
D. x ∈ {1; -3}
Cho biểu thức \(C=\dfrac{x}{2x-2}-\dfrac{x^2+1}{2-2x^2}\).
a. Tìm x để biểu thức C có nghĩa.
b.Rút gọn biểu thức C.
c.Tìm giá trị của x để giá trị của biểu thức C = \(\dfrac{-1}{2}\).
d. Tìm x để giá trị của phân thức C > 0.
\(a,ĐK:x\ne1;x\ne-1\\ b,C=\dfrac{x^2+x+x^2+1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{2x^2+2x+1}{2x^2-2}\\ c,C=-\dfrac{1}{2}\Leftrightarrow2-2x^2=2x^2+2x+1\\ \Leftrightarrow4x^2+2x-1=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{5}-1}{4}\\x=\dfrac{-\sqrt{5}-1}{4}\end{matrix}\right.\\ d,C>0\Leftrightarrow2x^2-2>0\left(2x^2+2x+1>0\right)\\ \Leftrightarrow\left(x-1\right)\left(x+1\right)>0\\ \Leftrightarrow\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)
Tìm các giá trị nguyên của x để phân thức sau có giá trị là số nguyên:
\(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)
ĐKXĐ: \(x\ne1\)
Ta có: \(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)
\(=\dfrac{x^4-2x^3+x^2-4x^2+8x-4+3}{x^2-2x+1}\)
\(=\dfrac{x^2\left(x^2-2x+1\right)-4\left(x^2-2x+1\right)+3}{x^2-2x+1}\)
\(=\dfrac{\left(x-1\right)^2\cdot\left(x^2-4\right)+3}{\left(x-1\right)^2}\)
\(=x^2-4+\dfrac{3}{\left(x-1\right)^2}\)
Để B nguyên thì \(3⋮\left(x-1\right)^2\)
\(\Leftrightarrow\left(x-1\right)^2\inƯ\left(3\right)\)
\(\Leftrightarrow\left(x-1\right)^2\in\left\{1;3;-1;-3\right\}\)
mà \(\left(x-1\right)^2>0\forall x\) thỏa mãn ĐKXĐ
nên \(\left(x-1\right)^2\in\left\{1;3\right\}\)
\(\Leftrightarrow x-1\in\left\{1;9\right\}\)
hay \(x\in\left\{2;10\right\}\) (nhận)
Vậy: \(x\in\left\{2;10\right\}\)
Tìm các giá trị nguyên của x để phân thức sau có giá trị là số nguyên:
\(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)
Tìm các giá trị nguyên của x để phân thức sau có giá trị là số nguyên:
a) \(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)
Tìm giá trị của x để các phân thức sau bằng 0:
\(\dfrac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}\)
ĐKXĐ :
\(x^4-x^3+2x^2-x+1\ne0\)
\(\Leftrightarrow x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)\ne0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2+1\right)\ne0\)
Pt
\(\Leftrightarrow x^4+x^3+x+1=0\)
\(\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^3+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\pm\dfrac{\sqrt{3}\iota+1}{2}\end{matrix}\right.\)
Chắc không cần tìm đkxđ đâu!
Bài 2: (3 điểm) Cho phân thức \(\dfrac{4x-4}{2x^2-2}\)
a/ Tìm điều kiện của x để giá trị của phân thức được xác định.
b/ Tìm giá trị của x để phân thức có giá trị bằng –2 .
c/ Tìm giá trị của x để phân thức có giá trị là số nguyên.
a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b) Ta có: \(\dfrac{4x-4}{2x^2-2}\)
\(=\dfrac{4\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{2}{x+1}\)
Để phân thức có giá trị bằng -2 thì \(\dfrac{2}{x+1}=-2\)
\(\Leftrightarrow x+1=-1\)
hay x=-2(thỏa ĐK)
tính giá trị của hàm số y = f(x) = \(\dfrac{x}{2}-\sqrt{x^2-1}+2\) tại:
a, x0 = \(\sqrt{5}\) b, x0 = \(\dfrac{1}{4}\)
Lời giải:
a. Tại $x_0=\sqrt{5}$ thì:
$y=f(x_0)=\frac{x_0}{2}-\sqrt{x_0^2-1}+2$
$=\frac{\sqrt{5}}{2}-\sqrt{5-1}+2=\frac{\sqrt{5}}{2}$
b. Tại $x=\frac{1}{4}$ thì $x^2-1=\frac{-15}{16}< 0$ nên căn thức $\sqrt{x^2-1}$ không xác định. Do đó không tính được.
cho phân thức E=\(\dfrac{5x+5}{2x^2+2x}\)
a/ Tìm điều kiện của x để phân thức được xác định
b/ Tìm giá trị của x để giá trị của phân thức bằng 1
a: ĐKXĐ: x<>0; x<>-1
b: E=5(x+1)/2x(x+1)=5/2x
b: Để E=1 thì 5/2x=1
=>2x=5
=>x=5/2
Bài 2: (3 điểm) Cho phân thức \(\dfrac{3x+3}{x^2-1}\)
a/ Tìm điều kiện của x để giá trị của phân thức được xác định.
b/ Tìm giá trị của x để phân thức có giá trị bằng –2 .
c/ Tìm giá trị của x để phân thức có giá trị là số nguyên.
phân thức được xác định ⇔ x2 - 1 ≠ 0 ⇔ x ≠ \(\left\{-1;1\right\}\)
\(\dfrac{3x+3}{x^2-1}=-2\)
=> 3x + 3 = -2x2 + 2
=> 2x2 + 3x + 1 = 0
=> (2x+1)(x+1) = 0
=> x = -1/2 (thỏa mãn) hoặc x = -1 (loại)
Vậy, để phân thức có giá trị bằng –2 thì x = -1/2.
\(\dfrac{3x+3}{x^2-1}\)=\(\dfrac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\) (x khác -1 và x khác 1)
= \(\dfrac{3}{x-1}\)
=> Phân thức ban đầu có giá trị nguyên ⇔ 3 chia hết cho x-1
=> x-1 ∈\(\left\{-3;-1;1;3\right\}\)
=> x ∈\(\left\{-2;0;2;4\right\}\)
Vậy, để phân thức có giá trị là số nguyên.thì x ∈\(\left\{-2;0;2;4\right\}\).
a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b) Ta có: \(\dfrac{3x+3}{x^2-1}\)
\(=\dfrac{3\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{3}{x-1}\)
Để phân thức có giá trị bằng -2 thì \(\dfrac{3}{x-1}=-2\)
\(\Leftrightarrow x-1=-\dfrac{3}{2}\)
hay \(x=-\dfrac{1}{2}\)(thỏa ĐK)
Bài 2: (3 điểm) Cho phân thức \(\dfrac{3x+3}{x^2-1}\)
a/ Tìm điều kiện của x để giá trị của phân thức được xác định.
b/ Tìm giá trị của x để phân thức có giá trị bằng –2 .
c/ Tìm giá trị của x để phân thức có giá trị là số nguyên.
a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b) Ta có: \(\dfrac{3x+3}{x^2-1}\)
\(=\dfrac{3\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{3}{x-1}\)
Để phân thức có giá trị bằng -2 thì \(\dfrac{3}{x-1}=-2\)
\(\Leftrightarrow x-1=\dfrac{-3}{2}\)
hay \(x=-\dfrac{1}{2}\)
Vậy: Để phân thức có giá trị bằng -2 thì \(x=-\dfrac{1}{2}\)
c) Để phân thức có giá trị là số nguyên thì \(3⋮x-1\)
\(\Leftrightarrow x-1\inƯ\left(3\right)\)
\(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow x\in\left\{2;0;4;-2\right\}\)
Kết hợp ĐKXĐ, ta được:
\(x\in\left\{2;0;4;-2\right\}\)
Vậy: Để phân thức có giá trị là số nguyên thì \(x\in\left\{2;0;4;-2\right\}\)