\(B=\dfrac{x-2}{x+1}\)
a) \(\dfrac{x^2-x}{x-2}+\dfrac{4-3x}{x-2}\)
b) \(\dfrac{a+2b}{3a-b}+\dfrac{2a-5b}{b-3a}\)
c) \(\dfrac{2}{x^2-9}+\dfrac{1}{x+3}\)
d) \(\dfrac{4x}{x^2-4}+\dfrac{x}{x+2}+\dfrac{2}{x-2}\)
e) \(\dfrac{3x^2-x+3}{x^3-1}+\dfrac{1-x}{x^2+x+1}+\dfrac{2}{1-x}\)
f) \(\dfrac{1}{x^2+3x+2}+\dfrac{1-x}{x^2+x+1}+\dfrac{2}{1-x}\)
g) \(\dfrac{a^3}{\left(a-b\right)\left(a-c\right)}+\dfrac{b^3}{\left(b-a\right)\left(b-c\right)}+\dfrac{c^3}{\left(c-a\right)\left(c-b\right)}\)
h) \(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}\)
a, \(\dfrac{x^2-x}{x-2}+\dfrac{4-3x}{x-2}\)
\(=\dfrac{x^2-x+4-3x}{x-2}=\dfrac{x^2-4x+4}{x-2}\)
c) \(\dfrac{2}{x^2-9}+\dfrac{1}{x+3}\)
Ta có: \(\dfrac{1}{x+3}=\dfrac{1\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{x-3}{x^2-9}\)
\(\Rightarrow\dfrac{2}{x^2-9}+\dfrac{1}{x+3}=\dfrac{2}{x^2-9}+\dfrac{x-3}{x^2-9}=\dfrac{2+x-3}{x^2-9}=\dfrac{x-1}{x^2-9}\)
b: \(=\dfrac{a+2b}{3a-b}-\dfrac{2a-5b}{3a-b}\)
\(=\dfrac{a+2b-2a+5b}{3a-b}=\dfrac{-a+7b}{3a-b}\)
c: \(=\dfrac{2+x-3}{\left(x+3\right)\left(x-3\right)}=\dfrac{x+1}{\left(x+3\right)\left(x-3\right)}\)
d: \(=\dfrac{4x+x^2-2x+2x+4}{\left(x+2\right)\left(x-2\right)}=\dfrac{x^2+4x+4}{\left(x+2\right)\left(x-2\right)}=\dfrac{x+2}{x-2}\)
e: \(=\dfrac{3x^2-x+3+1-2x+x^2-2x^2-2x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{2x^2-5x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)
tìm các hệ số a,b,c sao cho
a) \(\dfrac{1}{x\left(x+1\right)\left(x+2\right)}\)= \(\dfrac{a}{x}\)+\(\dfrac{b}{x+1}\)+\(\dfrac{c}{x+2}\)
b) \(\dfrac{1}{\left(x^2+1\right)\left(x-1\right)}\)=\(\dfrac{ax+b}{x^2+1}\)+\(\dfrac{c}{x-1}\)
a: =>a(x+1)(x+2)+bx(x+2)+cx(x+1)=1
=>a(x^2+3x+2)+bx^2+2bx+cx^2+cx=1
=>ax^2+3ax+2a+bx^2+2bx+cx^2+cx=1
=>x^2(a+b+c)+x(3a+2b+c)+2a=1
=>a+b+c=0 và 3a+2b+c=0 và a=1/2
=>a=1/2; b+c=-1/2; 2b+c=-3/2
=>b=-1; c=1/2; a=1/2
b: =>1=(ax+b)(x-1)+c(x^2+1)
=>x^2*a-a*x+bx-b+cx^2+c=1
=>x^2(a+c)+x(-a+b)-b+c=1
=>a+c=0 và -a+b=0 và -b+c=1
=>a+b=-1 và -a+b=0 và a+c=0
=>a=-1/2; b=-1/2; c=-a=1/2
Rút gọn:
a) A= \(\dfrac{x+y}{x-y}-\dfrac{x}{x+y}+\dfrac{2y^2}{x^2-y^2}\)
b) B= \(\dfrac{x}{x-2}-\dfrac{10}{\left(x-2\right)\left(x+3\right)}-\dfrac{x-1}{x+3}\)
c) C= \(\dfrac{1}{x-1}-\dfrac{x-1}{x^2+x+1}-\dfrac{3}{x^3-1}\)
a: \(A=\dfrac{x^2+2xy+y^2-x^2+xy+2y^2}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{3y^2+3xy}{\left(x-y\right)\left(x+y\right)}=\dfrac{3y}{x-y}\)
Đặt $ X = a - b; Y = b - c; Z = c - a \Rightarrow X + Y + Z = 0$
Với X + Y + Z = 0, ta chứng minh được :
$ ( \dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z} )^2 = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2}$
Thật vậy, ta có :
$ ( \dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z} )^2 = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2} + \dfrac{2}{XY} + \dfrac{2}{YZ} + \dfrac{2}{ZX}$
$ = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2} + 2.\dfrac{X + Y + Z}{XYZ}$
$ = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2}$ ( do X + Y + Z = 0)
$ \Rightarrow \sqrt{\dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2}} = \sqrt{( \dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z} )^2} = |\dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z}|$
Suy ra : $ \sqrt{\dfrac{1}{(a - b)^2} + \dfrac{1}{(b - c)^2} +\dfrac{1}{( c - a)^2}} = |\dfrac{1}{a - b} + \dfrac{1}{b - c} + \dfrac{1}{c - a}|$
Do a, b, c là số hữu tỷ nên $|\dfrac{1}{a - b} + \dfrac{1}{b - c} + \dfrac{1}{c - a}|$ cũng là số hữu tỷ. Ta có điều phải chứng minh.
Rút gọn:
a) A= \(\dfrac{x}{x-y}+\dfrac{2y^2}{x^2-y^2}-\dfrac{x}{x+y}\)
b) B= \(\dfrac{x}{x-2}-\dfrac{4x}{x^2-4}-\dfrac{2}{x+2}\)
c) C= \(\dfrac{5}{x+1}-\dfrac{10}{-x^2+x-1}-\dfrac{15}{x^3+1}\)
a) \(\dfrac{x}{x-y}+\dfrac{2y^2}{x^2-y^2}-\dfrac{x}{x+y}=\dfrac{x\left(x+y\right)+2y^2-x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{x^2+xy+2y^2-x^2+xy}{\left(x-y\right)\left(x+y\right)}=\dfrac{2y^2+2xy}{\left(x-y\right)\left(x+y\right)}=\dfrac{2y\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{2y}{x-y}\)
b) \(B=\dfrac{x}{x-2}-\dfrac{4x}{x^2-4}-\dfrac{2}{x+2}=\dfrac{x\left(x+2\right)-4x-2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2+2x-4x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-4x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-2}{x+2}\)
c) \(\dfrac{5}{x+1}-\dfrac{10}{-x^2+x-1}-\dfrac{15}{x^3+1}=\dfrac{5}{x+1}+\dfrac{10}{x^2-x+1}-\dfrac{15}{x^3+1}=\dfrac{5\left(x^2-x+1\right)+10\left(x+1\right)-15}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{5x^2-5x+5+10x+10-15}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{5x^2+5x}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{5x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{5x}{x^2-x+1}\)
CMR \(\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{1}{x\left(x+1\right)}\)
áp dụng kết quả bài toán trên, tính:
\(\dfrac{1}{^{^{ }}x^2+x}+\dfrac{1}{x^2+3\text{x}+2}+\dfrac{1}{x^2+6\text{x}+6}+\dfrac{1}{x^2+7\text{x}+12}+\dfrac{1}{x^2+9\text{x}+20}+\dfrac{1}{x+5}_{ }\)
Rút gọn
a) \((\dfrac{2x^2+3x}{x^3+1}+\dfrac{1}{x^2-x+1}).\dfrac{x^2-x+1}{x}\)
b) \(\left(\dfrac{1}{x-1}-\dfrac{1}{x}\right):\left(\dfrac{x+1}{x-2}-\dfrac{x+2}{x-1}\right)\)
c) \(\left(\dfrac{1}{x}+\dfrac{x}{x+1}\right).\dfrac{x^2+x}{x}\)
Lời giải:
a. ĐKXĐ: $x\neq 0;-1$
\(=\left(\frac{2x^2+3x}{(x+1)(x^2-x+1)}+\frac{x+1}{(x+1)(x^2-x+1)}\right).\frac{x^2-x+1}{x}\)
\(=\frac{2x^2+3x+x+1}{(x+1)(x^2-x+1)}.\frac{x^2-x+1}{x}=\frac{2x^2+4x+1}{x(x+1)}\)
b. ĐKXĐ: $x\neq 0; 1;2$
\(=\frac{x-(x-1)}{x(x-1)}:\frac{(x+1)(x-1)-(x-2)(x+2)}{(x-2)(x-1)}=\frac{1}{x(x-1)}:\frac{3}{(x-2)(x-1)}\)
\(=\frac{1}{x(x-1)}.\frac{(x-2)(x-1)}{3}=\frac{x-2}{3x}\)
c. ĐKXĐ: $x\neq 0; -1$
\(=\frac{x+1+x^2}{x(x+1)}.\frac{x(x+1)}{x}=\frac{x^2+x+1}{x}\)
Mí bác ơi~~Ai giải giúp em với~Em đang cần gấp lắm a~~Em cảm ơn các bác nhiều nhiều lắm a
bài 1:
b,\(\left(\dfrac{3x}{1-3x}+\dfrac{2x}{3x+1}\right):\dfrac{6x^2+10x}{1-6x+9x^2}\)
c,
\(\dfrac{x-1}{x^3}-\dfrac{x+1}{x^3-x^2}+\dfrac{3}{x^3-2x^2+x}\)
d,\(\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\)
e,\(\dfrac{x+1}{x+2}:\left(\dfrac{x+2}{x+3}:\dfrac{x+3}{x+1}\right)\)
Bài 2:Rút gọn
a,\(\dfrac{\dfrac{1}{x}+\dfrac{1}{y}}{\dfrac{1}{x}-\dfrac{1}{y}}\)
b,
\(\dfrac{\dfrac{x}{x+1}-\dfrac{x-1}{x}}{\dfrac{x}{x-1}-\dfrac{x+1}{x}}\)
c,\(1-\dfrac{x}{1-\dfrac{x}{x+1}}\)
d,\(\dfrac{1-\dfrac{2}{x+1}}{1-\dfrac{x^2-2}{x^2-1}}\)
Thực hiện phép tính :
a, \(\dfrac{x^3}{x+1}+\dfrac{x^2}{x-1}+\dfrac{1}{x+1}+\dfrac{1}{1-x}\)
b, \(\dfrac{x^3}{x-1}-\dfrac{x^2}{x+1}-\dfrac{1}{x-1}+\dfrac{1}{x+1}\)
c, \(\dfrac{4-2x+x^2}{2+x}-2-x\)
Tính:
a) \(\left( {\dfrac{{1 - x}}{x} + {x^2} - 1} \right):\dfrac{{x - 1}}{x}\)
b) \(\left( {\dfrac{1}{{{x^2}}} - \dfrac{1}{x}} \right) \cdot \dfrac{{{x^2}}}{y} + \dfrac{x}{y}\)
c) \(\dfrac{3}{x} - \dfrac{2}{x}:\dfrac{1}{x} + \dfrac{1}{x} \cdot \dfrac{{{x^2}}}{3}\)
\(a,=\left(\dfrac{1-x}{x}+\dfrac{x^3-x}{x}\right)\times\dfrac{x}{x-1}\\ =\dfrac{1-x+x^3-x}{x}\times\dfrac{x}{x-1}\\ =\dfrac{1-2x+x^3}{x-1}\\ b,=\left(\dfrac{x-x^2}{x.x^2}\right).\dfrac{x^2}{y}+\dfrac{x}{y}\\ =\dfrac{x-x^2}{xy}+\dfrac{x}{y}\\ =\dfrac{x-x^2+x^2}{xy}=\dfrac{x}{xy}=\dfrac{1}{y}\)
\(c,=\dfrac{3}{x}-\dfrac{2}{x}\times x+\dfrac{x}{3}\\ =\dfrac{3}{x}-2+\dfrac{x}{3}\\ =\dfrac{3-2x+x^2}{3x}\)