Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cinderella
Xem chi tiết
Nguyen My Van
26 tháng 5 2022 lúc 13:48

\(B=\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{50}}-\dfrac{1}{3^{51}}\)

\(=\dfrac{1}{\left(-3\right)}+\dfrac{1}{\left(-3\right)^2}+\dfrac{1}{\left(-3\right)^3}+...+\dfrac{1}{\left(-3\right)^{50}}+\dfrac{1}{\left(-3\right)^{51}}-\dfrac{1}{3}\)

\(=\dfrac{1}{\left(3\right)^2}+\dfrac{1}{\left(3\right)^3}+...+\dfrac{1}{\left(-3\right)^{51}}+\dfrac{1}{\left(-3\right)^{52}}\)

\(\Rightarrow\dfrac{4}{3}B=\dfrac{1}{-3}-\dfrac{1}{\left(-3\right)^{52}}=\dfrac{-3^{51}-1}{3^{52}}\Rightarrow B=\dfrac{-3^{51}-1}{4.3^{51}}\)

 

Nguyễn acc 2
26 tháng 5 2022 lúc 13:50

undefined

Mori Rannnnnnnnnnnnnnnnn...
Xem chi tiết
Nguyen My Van
18 tháng 5 2022 lúc 15:42

\(B=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)

\(B=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+\dfrac{49}{1}\)

\(B=\left(\dfrac{50}{49}+\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}\right)+1\)

\(B=\dfrac{50}{50}+\dfrac{50}{49}+\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}\)

\(B=50\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+...+\dfrac{1}{2}\right)\)

\(\Rightarrow\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}}{50\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+...+\dfrac{1}{2}\right)}=\dfrac{1}{50}\)

Nguyễn Phương Chi
Xem chi tiết
Nguyễn Hoàng Minh
12 tháng 9 2021 lúc 9:24

\(a,=\dfrac{13}{50}\cdot\dfrac{50}{13}\cdot\left(-\dfrac{31}{2}\right)\cdot\dfrac{169}{2}=-\dfrac{5239}{2}\\ b,=\dfrac{-\dfrac{49}{100}\cdot\left(-125\right)}{-\dfrac{343}{27}\cdot\dfrac{81}{16}\cdot\left(-1\right)}=\dfrac{\dfrac{245}{4}}{\dfrac{1029}{16}}=\dfrac{245}{4}\cdot\dfrac{16}{1029}=\dfrac{20}{21}\)

ILoveMath
12 tháng 9 2021 lúc 9:23

a) \(\dfrac{13}{50}.\left(-15.5\right):\dfrac{13}{50}.84\dfrac{1}{2}=\dfrac{13}{50}.-75:\dfrac{13}{50}.\dfrac{169}{2}=-\dfrac{75.169}{2}=-\dfrac{12675}{2}\)

b) \(\dfrac{\left(-0,7\right)^2.\left(-5\right)^3}{\left(-2\dfrac{1}{3}\right)^3.\left(1\dfrac{1}{2}\right)^4.\left(-1\right)^5}=\dfrac{0,49.\left(-125\right)}{-\dfrac{343}{27}.\dfrac{81}{16}.\left(-1\right)}=-\dfrac{\dfrac{245}{4}}{\dfrac{1029}{16}}=\dfrac{20}{21}\)

0o0^^^Nhi^^^0o0
Xem chi tiết
Nguyễn Thanh Hằng
30 tháng 9 2017 lúc 20:51

a/ Đặt :

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+.........+\dfrac{1}{3^{50}}\)

\(\Leftrightarrow3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+.......+\dfrac{1}{3^{49}}\)

\(\Leftrightarrow3A-A=\left(1+\dfrac{1}{3}+....+\dfrac{1}{3^{49}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+....+\dfrac{1}{3^{50}}\right)\)

\(\Leftrightarrow2A=1-\dfrac{1}{3^{50}}\)

còn sao nx thì mk chịu =.=

Dang Tran Phong
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 4 2023 lúc 22:54

\(=\dfrac{1}{3}+\dfrac{1}{6}+...+\dfrac{1}{50\cdot\dfrac{49}{2}}\)

\(=\dfrac{1}{2\cdot\dfrac{3}{2}}+\dfrac{1}{3\cdot\dfrac{4}{2}}+...+\dfrac{1}{50\cdot\dfrac{49}{2}}\)

\(=\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{49\cdot50}\)

\(=2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)

=2*24/50=48/50=24/25

Phượng Phạm
Xem chi tiết
nguyễn thành an
8 tháng 6 2023 lúc 22:01

Bài 3

a,26/100+0,009+41/100+0,24

0,26+0,09+0,41+0,24

(0,26+0,24)+(0,09+0,41)

0,5+0,5

=1

b,9+1/4+6+2/7+7+3/5+8+2/3+2/5+1/3+5/7+3/4

(9+6+7+8)+(2/7+5/7)+(1/4+3/4)+(3/5+2/5)+(2/3+1/3)

30+1+1+1+1

=34

Bài 4,5 khó quá mik ko bít lamf^^))

 

 

Bài 5: vì \(\dfrac{3}{11}\) = \(\dfrac{3\times5}{11\times5}\) = \(\dfrac{15}{55}\)

Vậy Khi giữ nguyên tử số thì số cần thêm vào mẫu số là: 

              55 - 39 = 16

Đáp số: 16 

Bài 4: a, \(\dfrac{2008}{2009}\) < 1; \(\dfrac{10}{9}\) > 1

           \(\dfrac{2008}{2009}\) < \(\dfrac{10}{9}\)

         b, \(\dfrac{1}{a+1}\) và \(\dfrac{1}{a-1}\)

Ta có: a + 1 > a - 1 ⇒ \(\dfrac{1}{a+1}\) < \(\dfrac{1}{a-1}\)

 

Nguyễn Thị Kim Ngân
Xem chi tiết
Nguyên
30 tháng 7 2017 lúc 16:54

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{50}}\)

\(3.A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{49}}\)

\(2A=3A-A=1-\dfrac{1}{3^{49}}\)

\(\Rightarrow A=\dfrac{1-\dfrac{1}{3^{50}}}{2}\)

\(B=\dfrac{5}{3}+\dfrac{5}{3^2}+...+\dfrac{5}{3^{50}}=5\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{50}}\right)\)

Căn cứ vào câu A thì các trong ngặc bằng \(\dfrac{1-\dfrac{1}{3^{50}}}{2}\)

suy ra \(B=\dfrac{5\left(1-\dfrac{1}{3^{50}}\right)}{2}\)

tick mik nha

Huỳnh Đức Mạnh
30 tháng 7 2017 lúc 19:19

hoi kho day

Đoàn Phương Linh
Xem chi tiết
Nguyễn Ngọc Linh
Xem chi tiết
títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 1 2024 lúc 18:47

a: \(A=2^{\dfrac{1}{3}}\cdot2^{\dfrac{2}{3}}=2^{\dfrac{1}{3}+\dfrac{2}{3}}=2^{\dfrac{3}{3}}=2^1=2\)

b: \(B=36^{\dfrac{3}{2}}=\left(6^2\right)^{\dfrac{3}{2}}=6^{2\cdot\dfrac{3}{2}}=6^3=216\)

c: \(C=36^{\dfrac{3}{2}}\cdot\left(\dfrac{1}{6}\right)^2=\left(6^2\right)^{\dfrac{3}{2}}\cdot\dfrac{1}{6^2}=\dfrac{6^{2\cdot\dfrac{3}{2}}}{6^2}=\dfrac{6^3}{6^2}=6\)

d: \(D=\sqrt{81}\cdot\left(\dfrac{1}{3}\right)^2=9\cdot\dfrac{1}{3^2}=9\cdot\dfrac{1}{9}=1\)

e: \(E=\left(3+2\sqrt{2}\right)^{50}\cdot\left(3-2\sqrt{2}\right)^{50}\)

\(=\left[\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\right]^{50}\)

\(=\left(9-8\right)^{50}=1^{50}=1\)

f: \(F=120^{\sqrt{5}+1}\cdot120^{3-\sqrt{5}}\)

\(=120^{\sqrt{5}+1+3-\sqrt{5}}=120^4\)

g: \(G=\left(3+2\sqrt{2}\right)^{2019}\cdot\left(3\sqrt{2}-4\right)^{2018}\)

\(=\left(3+2\sqrt{2}\right)^{2018}\cdot\left(3\sqrt{2}-4\right)^{2018}\cdot\left(3+2\sqrt{2}\right)\)

\(=\left[\left(3+2\sqrt{2}\right)\left(3\sqrt{2}-4\right)\right]^{2018}\left(3+2\sqrt{2}\right)\)

\(=\left(9\sqrt{2}-12+12-8\sqrt{2}\right)^{2018}\cdot\left(3+2\sqrt{2}\right)\)

\(=\left(\sqrt{2}\right)^{2018}\cdot\left(3+2\sqrt{2}\right)=2^{\dfrac{1}{2}\cdot2018}\cdot\left(3+2\sqrt{2}\right)\)

\(=2^{1009}\cdot\left(3+2\sqrt{2}\right)\)