Cho \(\sqrt{x^2-7x+24}-\sqrt{x^2-7x+15}=3\)\(\)
Tính \(N=\sqrt{x^2-7x+24}+\sqrt{x^2-7x+15}\)
Cho \(\sqrt{x^2-7x+19}-\sqrt{x^2-7x+15}=2\)
Tính \(A=\sqrt{x^2-7x+19}+\sqrt{x^2-7x+15}\)
Đặt \(\sqrt{x^2-7x+19}-\sqrt{x^2-7x+15}=B\) = B
Xét tích \(AB=\left(\sqrt{x^2-7x+19}-\sqrt{x^2-7x+15}\right)\left(\sqrt{x^2-7x+19}+\sqrt{x^2-7x+15}\right)\)
\(=x^2-7x+19-\left(x^2-7x+15\right)=x^2-7x+19-x^2+7x-15\)
\(=4\)
Mà \(B=2\Leftrightarrow A=2\)
Cho \(\sqrt{x^2-7x+19}-\sqrt{x^2-7x+15}=2\)
Tính M=\(\sqrt{x^2-7x+19}+\sqrt{x^2-7x+15}\)
Ta có $\sqrt{x^2-7x+19}-\sqrt{x^2-7x+15}=2$
$=>2M=(\sqrt{x^2-7x+19}-\sqrt{x^2-7x+15})(\sqrt{x^2-7x+19}+\sqrt{x^2-7x+15})$
$=>2M=\sqrt{x^2-7x+19}^2-\sqrt{x^2-7x+15}^2$
$=>2M=(x^2-7x+19)-(x^2-7x+15)=4$
$=>M=2$
\(2.M=\left(x^2-7x+19\right)-\left(x^2-7x+15\right)=4\Rightarrow M=2\)
1, \(K=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
2, \(\sqrt{x-3}-2.\sqrt{x^2-3x}=0\)
3, \(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)
4, \(x-5\sqrt{x}+4=0\)
1,\(K=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{x}}\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}\right)\)\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{5}-1\right)^2}+\sqrt{\left(\sqrt{5}+1\right)^2}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\left|\sqrt{5}-1\right|+\sqrt{5}+1\right)\)\(=\dfrac{1}{\sqrt{2}}\left|\sqrt{5}-1+\sqrt{5}+1\right|=\dfrac{1}{\sqrt{2}}.2\sqrt{5}\)\(=\sqrt{10}\)
2, \(\sqrt{x-3}-2\sqrt{x^2-3x}=0\left(đk:x\ge3\right)\)
\(\Leftrightarrow\sqrt{x-3}\left(1-2\sqrt{x}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\1-2\sqrt{x}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=\left(\dfrac{1}{2}\right)^2=\dfrac{1}{4}\left(ktm\right)\end{matrix}\right.\)
Vậy pt có nghiệm x=3
3, \(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\left(đk:x>-\dfrac{5}{7}\right)\)
\(\Leftrightarrow9x-7=7x+5\)
\(\Leftrightarrow x=6\left(tm\right)\)
4, \(x-5\sqrt{x}+4=0\)(đk: \(x\ge0\))
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=16\end{matrix}\right.\) (tm)
Vậy...
1) Bạn tự làm
2) ĐK: \(x\ge3\)
PT \(\Leftrightarrow\sqrt{x-3}\left(1-2\sqrt{x}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\2\sqrt{x}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{4}\left(loại\right)\end{matrix}\right.\)
Vậy ...
3) ĐK: \(x>-\dfrac{5}{7}\)
PT \(\Rightarrow9x-7=7x+5\) \(\Leftrightarrow x=6\)
Vậy ...
4) ĐK: \(x\ge0\)
PT \(\Leftrightarrow x-4\sqrt{x}-\sqrt{x}+4=0\)
\(\Leftrightarrow\left(\sqrt{x}-4\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=4\\\sqrt{x}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=16\\x=1\end{matrix}\right.\)
Vậy ...
giải phương trình : \(x^2-7x+\sqrt{x^2-7x+8}=12\)
2. tính : B = \(\sqrt{28-16\sqrt{3}}+\sqrt{13-4\sqrt{3}}\)
C =\(\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right)\)
D = \(\sqrt{4+2\sqrt{3}}-\sqrt{\dfrac{2}{2+\sqrt{3}}}\)
DÂN TOÁN ƠI !!!!!!! CỨU T VỚI
Bài 2:
\(B=\sqrt{28-16\sqrt{3}}+\sqrt{13-4\sqrt{3}}\)
\(=\sqrt{\left(4-2\sqrt{3}\right)^2}+\sqrt{\left(2\sqrt{3}-1\right)^2}\)
\(=\left|4-2\sqrt{3}\right|+\left|2\sqrt{3}-1\right|\)
\(=4-2\sqrt{3}+2\sqrt{3}-1\)
\(=3\)
\(C=\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right)\)
\(=\sqrt{2}.\sqrt{4+\sqrt{15}}\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{8+2\sqrt{15}}\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
\(=5-3=2\)
\(D=\sqrt{4+2\sqrt{3}}-\sqrt{\dfrac{2}{2+\sqrt{3}}}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\dfrac{\sqrt{2}.\sqrt{2-\sqrt{3}}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}\)
\(=\sqrt{3}+1-\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{3}+1-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\sqrt{3}+1-\sqrt{3}+1=2\)
1) \(\Leftrightarrow x^2-7x+8+\sqrt{x^2-7x+8}-20=0\)
Đặt \(t=\sqrt{x^2-7x+8}\ge0\)
Phương trình tương đương
\(t^2+t-20=0\)
\(\left[{}\begin{matrix}t=4\left(TM\right)\\t=-5\left(KTM\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-7x+8}=4\)
Bạn đọc tự giải quyết tiếp bài toán.
Cho \(x=1+\sqrt[3]{2}+\sqrt[3]{4}\)
Tính \(M=\dfrac{\sqrt{x^3+x^2+5x+3}-6}{\sqrt{x^3-2x^2-7x+3}}\)
\(x=1+1.\sqrt[3]{2}+\sqrt[3]{2}^2=\dfrac{\sqrt[3]{2}^3-1^3}{\sqrt[3]{2}-1}=\dfrac{1}{\sqrt[3]{2}-1}\)
\(\Leftrightarrow\dfrac{1}{x}+1=\sqrt[3]{2}\)
\(\Leftrightarrow\left(x+1\right)^3=2x^3\Leftrightarrow x^3-3x^2-3x-1=0\).
Do đó \(M=\dfrac{\sqrt{x^3+x^2+5x+3}-6}{\sqrt{x^3-2x^2-7x+3}}\)
\(M=\dfrac{\sqrt{\left(x^3-3x^2-3x-1\right)+\left(4x^2+8x+4\right)}-6}{\sqrt{\left(x^3-3x^2-3x-1\right)+\left(x^2-4x+4\right)}}\)
\(M=\dfrac{\sqrt{\left(2x+2\right)^2}-6}{\sqrt{\left(x-2\right)^2}}=\dfrac{2x+2-6}{x-2}=2\). (Do \(x>2\))
Cho x>0 và \(\frac{x-2\sqrt{x}+1}{x-\sqrt{x}+1}=\frac{1}{2}\)
Tính \(B=\frac{3x\sqrt{x}+10x+19}{x^2+7x+15}\)
ta có:\(\frac{x-2\sqrt{x}+1}{x-\sqrt{x}+1}=\frac{1}{2}\)
\(\Rightarrow x-3\sqrt{x}+1=0\)
\(\Rightarrow\hept{\begin{cases}x+1=3\sqrt{x}\\x-3\sqrt{x}=-1\end{cases}}\)
lại có \(B=\frac{3x\sqrt{x}+10x+19}{x^2+7x+15}\)
\(=\frac{3x\sqrt{x}-9x+19x+19}{x^2-9x+16x+15}\)
\(=\frac{3\sqrt{x}\left(x-3\sqrt{x}\right)+19\left(x+1\right)}{\left(x+3\sqrt{x}\right)\left(x-3\sqrt{x}\right)+16x+15}\)
\(=\frac{-3\sqrt{x}+19\times3\sqrt{x}}{-1\times\left(x+3\sqrt{x}\right)+16x+15}\)
\(=\frac{57\sqrt{x}-3\sqrt{x}}{15x+15-3\sqrt{x}}\)
\(=\frac{54\sqrt{x}}{15\left(x+1\right)-3\sqrt{x}}\)
\(=\frac{54\sqrt{x}}{45\sqrt{x}-3\sqrt{x}}\)
\(=\frac{54\sqrt{x}}{42\sqrt{x}}=\frac{27}{21}\)
\(\dfrac{3\left(x^2+2x-3\right)}{\sqrt{x+4}-1}-\dfrac{7x^2-19x+12}{\sqrt{12-7x}}=16x^2+11x-27\)
Tham khảo:
Giải phương trình sau trên tập số thực: \(\frac{3(x^2+2x-3)}{\sqrt{x+4}-1}-\frac{7x^2-19x+12}{\sqrt{12-7x}}=16x^2+11x-27\) - ngọc trang
Tìm x để biểu thức sau có nghĩa:
c) \(\dfrac{1}{\sqrt{4x^2-12x+9}}\)
d) \(\dfrac{1}{\sqrt{x^2-x+1}}\)
e) \(\dfrac{1}{\sqrt{x^2-8x+15}}\)
f) \(\dfrac{1}{\sqrt{3x^2-7x+20}}\)
1)ĐK:`4x^2-12x+9>0`
`<=>(2n-3)^2>0`
`<=>2n-3 ne 0`
`<=>n ne 3/2`
`d)x^2-x+1`
`=(x-1/2)^2+3/4>0AAx`
`=>` bt xd `AAx in RR`
e)ĐK:`x^2-8x+15>0`
`<=>x^2-3x-5x+15>0`
`<=>x(x-3)-5(x-3)>0`
`<=>(x-3)(x-5)>0`
`TH1:` \(\begin{cases}x-3>0\\x-5>0\\\end{cases}\)
`<=>` \(\begin{cases}x>3\\x>5\\\end{cases}\)
`<=>x>5`
`TH2:` \(\begin{cases}x-3<0\\x-5<0\\\end{cases}\)
`<=>` \(\begin{cases}x<3\\x<5\\\end{cases}\)
`<=>x<3`
f)ĐK:`3x^2-7x+20>0`
`<=>x^2-2x+1+2x^2-5x+19>0`
`<=>(x-1)^2+2(x-5/2)^2+13/2>0` luôn đúng
c) Để biểu thức \(\dfrac{1}{\sqrt{4x^2-12x+9}}\) có nghĩa thì \(4x^2-12x+9>0\)
\(\Leftrightarrow\left(2x-3\right)^2>0\)
\(\Leftrightarrow2x-3\ne0\)
\(\Leftrightarrow2x\ne3\)
hay \(x\ne\dfrac{3}{2}\)
d) Để biểu thức \(\dfrac{1}{\sqrt{x^2-x+1}}\) có nghĩa thì \(x^2-x+1>0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}>0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)(luôn đúng)
e) Để biểu thức \(\dfrac{1}{\sqrt{x^2-8x+15}}\) có nghĩa thì \(x^2-8x+15>0\)
\(\Leftrightarrow\left(x-4\right)^2>1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4>1\\x-4< -1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>5\\x< 3\end{matrix}\right.\)
f) Để biểu thức \(\dfrac{1}{\sqrt{3x^2-7x+20}}\) có nghĩa thì \(3x^2-7x+20>0\)
\(\Leftrightarrow x^2-\dfrac{7}{3}x+\dfrac{20}{3}>0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}+\dfrac{191}{36}>0\)
\(\Leftrightarrow\left(x-\dfrac{7}{6}\right)^2+\dfrac{191}{36}>0\)(luôn đúng)
giải phương trình
a, \(\sqrt{4x-20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
b, \(2x-x^2+\sqrt{6x^2-12x+7}=0\)
c, \(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)