Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Thị Phương Thanh
Xem chi tiết
Bùi Quỳnh Hương
29 tháng 4 2016 lúc 10:56

a. Tiếp tuyến của \(\left(C_m\right)\) tại điểm có hoành độ x = 1 có phương trình :

\(y=\left(m-2\right)\left(x-1\right)+3m-2=\left(m-2\right)x+3m\)

Yêu cầu của bài toán khi và chỉ khi \(\begin{cases}m-2=3\\2m\ne10\end{cases}\) vô nghiệm

Vậy không tồn tại m thỏa mãn yêu cầu bài toán

b. Ta có \(y'=3\left(x^2-\frac{4}{3}x+\frac{4}{9}\right)+m-\frac{7}{3}=3\left(x-\frac{2}{3}\right)^2+m-\frac{7}{3}\)

Suy ra \(y'\ge m-\frac{7}{3}\)

Tiếp tuyến tại điểm có hoành độ \(x=\frac{2}{3}\) có hệ số góc nhỏ nhất và hệ số góc có giá trị \(k=m-\frac{7}{3}\)

Yêu cầu bài toán \(\Leftrightarrow k.2=-1\Leftrightarrow\left(m-\frac{7}{3}\right).2=-1\Leftrightarrow m=\frac{11}{6}\)

hải anh thư hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 8 2023 lúc 20:02

loading...  

Anh Phạm
Xem chi tiết
YangSu
25 tháng 4 2022 lúc 19:10

\(\dfrac{1}{2}x^2-\left(-2+1\right)x+\dfrac{-2-1}{2}=0\)

\(\Rightarrow\dfrac{1}{2}x^2+x-\dfrac{3}{2}=0\)

Tới đây dùng \(\Delta\) chứ, nếu bn lấy \(\dfrac{1}{2}\) đặt lm nhân tử chung thì ở đây hơi vô lí 

YangSu
25 tháng 4 2022 lúc 19:15

\(\Delta=b^2-4ac=1-4.\dfrac{1}{2}.\left(-\dfrac{3}{2}\right)=4>0\)

\(\Rightarrow\)Pt có 2 nghiệm phân biệt

\(\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-1+2}{1}=1\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-1-2}{1}=-3\end{matrix}\right.\)

Thay \(x_1=1\) vào \(y=\dfrac{1}{2}x^2\Rightarrow y=\dfrac{1}{2}\)

Thay \(x_2=-3\) vào \(y=-x+\dfrac{3}{2}\Rightarrow y=\dfrac{9}{2}\)

hải anh thư hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 8 2023 lúc 9:41

a: loading...

b: Phương trình hoành độ giao điểm là:

2x-1=x+2

=>x=3

Thay x=3 vào y=x+2, ta được:

y=3+2=5

c: Vì (d)//(d1) nên (d): y=2x+b

Thay x=1 và y=0 vào (d), ta được:

b+2=0

=>b=-2

=>y=2x-2

nguyen hoang duong
Xem chi tiết
Lan Anh
Xem chi tiết
nguyen hoang duong
Xem chi tiết
thu dinh
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 3 2021 lúc 16:33

Phương trình hoành độ giao điểm d1 và d2:

\(x-m+4=-x+3m-2\)

\(\Leftrightarrow2x=4m-6\)

\(\Rightarrow x=2m-3\Rightarrow y=m+1\)

Để giao điểm thuộc y=2x-3

\(\Rightarrow m+1=2\left(2m-3\right)-3\)

\(\Rightarrow m=\dfrac{10}{3}\)

Thanh Nguyễn
Xem chi tiết
trần vũ hoàng phúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 12 2023 lúc 23:20

Tọa độ giao điểm của (d1) và (d2) là:

\(\left\{{}\begin{matrix}mx+2y=m+1\\2x+my=2m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2mx+4y=2m+2\\2mx+m^2y=2m^2-m\end{matrix}\right.0\Leftrightarrow\left\{{}\begin{matrix}2mx+m^2y-2mx-4y=2m^2-m-2m-2\\mx+2y=m+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y\left(m^2-4\right)=2m^2-3m-2\\mx+2y=m+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y\left(m-2\right)\left(m+2\right)=\left(m-2\right)\left(2m+1\right)\\mx+2y=m+1\end{matrix}\right.\)(1)

TH1: m=2

Hệ phương trình (1) sẽ trở thành:

\(\left\{{}\begin{matrix}y\left(2-2\right)\left(2+2\right)=\left(2-2\right)\left(2\cdot2+1\right)\\2x+2y=2+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}0y=0\\2x+2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y\in R\\2x+2y=3\end{matrix}\right.\)

Vậy: Khi m=2 thì (d1) và (d2) trùng nhau

TH2: m=-2

Hệ phương trình (1) sẽ trở thành:

\(\left\{{}\begin{matrix}y\cdot\left(-2-2\right)\left(-2+2\right)=\left(-2-2\right)\left(-2\cdot2+1\right)\\-2x+2y=-2+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}0y=\left(-4\right)\cdot\left(-3\right)=12\\-2x+2y=-1\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\varnothing\)

Vậy: Khi m=-2 thì (d1)//(d2)

TH3: \(m\notin\left\{2;-2\right\}\)

hệ phương trình (1) sẽ trở thành:

\(\left\{{}\begin{matrix}y=\dfrac{\left(m-2\right)\left(2m+1\right)}{\left(m-2\right)\left(m+2\right)}=\dfrac{2m+1}{m+2}\\mx+2y=m+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{2m+1}{m+2}\\mx=m+1-\dfrac{4m+2}{m+2}=\dfrac{\left(m+1\right)\left(m+2\right)-4m-2}{m+2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{2m+1}{m+2}\\x=\dfrac{m^2+3m+2-4m-2}{m\left(m+2\right)}=\dfrac{m^2-m}{m\left(m+2\right)}=\dfrac{m-1}{m+2}\end{matrix}\right.\)

vậy: Khi \(m\notin\left\{2;-2\right\}\) thì (d1) cắt (d2) tại \(A\left(\dfrac{m-1}{m+2};\dfrac{2m+1}{m+2}\right)\)