Cho hàm số : \(y=x^3-2x^2+\left(m-1\right)x+2m\left(C_m\right)\)
a. Tìm m để tiếp tuyến của đồ thị \(\left(C_m\right)\) tại điểm có hoành độ x = 1 song song với đường thẳng \(y=3x+10\)
b. Tìm m để tiếp tuyến có hệ số góc nhỏ nhất của đồ thị \(\left(C_m\right)\) vuông góc với đường thẳng \(\Delta:y=2x+1\)
a. Tiếp tuyến của \(\left(C_m\right)\) tại điểm có hoành độ x = 1 có phương trình :
\(y=\left(m-2\right)\left(x-1\right)+3m-2=\left(m-2\right)x+3m\)
Yêu cầu của bài toán khi và chỉ khi \(\begin{cases}m-2=3\\2m\ne10\end{cases}\) vô nghiệm
Vậy không tồn tại m thỏa mãn yêu cầu bài toán
b. Ta có \(y'=3\left(x^2-\frac{4}{3}x+\frac{4}{9}\right)+m-\frac{7}{3}=3\left(x-\frac{2}{3}\right)^2+m-\frac{7}{3}\)
Suy ra \(y'\ge m-\frac{7}{3}\)
Tiếp tuyến tại điểm có hoành độ \(x=\frac{2}{3}\) có hệ số góc nhỏ nhất và hệ số góc có giá trị \(k=m-\frac{7}{3}\)
Yêu cầu bài toán \(\Leftrightarrow k.2=-1\Leftrightarrow\left(m-\frac{7}{3}\right).2=-1\Leftrightarrow m=\frac{11}{6}\)