Cho hàm số : \(y=\frac{4}{3}x^3-\left(2m+1\right)x^2+\left(m+2\right)x+\frac{1}{3}\), có đồ thị \(\left(C_m\right)\), m là tham số. Gọi A là giao điểm của \(\left(C_m\right)\) với trục tung. Tìm m sao cho tiếp tuyến của \(\left(C_m\right)\) tại A tạo với 2 trục tọa độ một tam giác có diện tích bằng \(\frac{1}{3}\)
Ta có : \(A\left(0;\frac{1}{3}\right)\) và \(y'=4x^2-2\left(2m+1\right)x+m+2\)
Suy ra \(y'\left(0\right)=m+2\)
Tiếp tuyến của d cắt Ox tại \(B\left(-\frac{1}{3m+6};0\right)\) (m=-2 không thỏa mãn yêu cầu bài toán)
Khi đó diện tích của tam giác tạo bởi d với 2 trục tọa độ là :
\(S=\frac{1}{2}OA.OB=\frac{1}{2}.\frac{1}{3}.\left|\frac{-1}{3m+6}\right|=\frac{1}{18\left|m+2\right|}\)
Theo giả thiết ta có : \(\frac{1}{18\left|m+2\right|}=\frac{1}{3}\Leftrightarrow\left|m+2\right|=\frac{1}{6}\)
\(\Leftrightarrow m=-\frac{13}{6}\) hoặc \(m=-\frac{11}{6}\)