tìm giá trị nỏ nhất A =\(\dfrac{1}{\sqrt{x}\left(1-\sqrt{x}\right)}\)vs x≥0,x≠1
cho bt A=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left[\dfrac{2}{x}-\dfrac{2-x}{x\left(\sqrt{x}+1\right)}\right]\)
a)rút gọn bt A
b)tính giá trị của bt A khi\(x=4+2\sqrt{3}\)
c)tìm giá trị của x để bt \(\sqrt{A}\)có giá trị nỏ nhất
ĐKXĐ: \(x>0;x\ne1\)
\(A=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{2\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}-\dfrac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)
\(=\left(\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{x+2\sqrt{x}}{x\left(\sqrt{x}+1\right)}\right)\)
\(=\dfrac{\left(x+2\sqrt{x}\right).x.\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+2\sqrt{x}\right)}=\dfrac{x}{\sqrt{x}-1}\)
b.
\(x=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}+1\)
\(\Rightarrow A=\dfrac{4+2\sqrt{3}}{\sqrt{3}+1-1}=\dfrac{4+2\sqrt{3}}{\sqrt{3}}=\dfrac{6+4\sqrt{3}}{3}\)
c.
Để \(\sqrt{A}\) xác định \(\Rightarrow\sqrt{x}-1>0\Rightarrow x>1\)
Ta có:
\(\sqrt{A}=\sqrt{\dfrac{x}{\sqrt{x}-1}}=\sqrt{\dfrac{x}{\sqrt{x}-1}-4+4}=\sqrt{\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-1}+4}\ge\sqrt{4}=2\)
Dấu "=" xảy ra khi \(\sqrt{x}-2=0\Rightarrow x=4\)
P = \(\left(\dfrac{2\sqrt{x}+2}{x\sqrt{x}+x-\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right):\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a) Rút gọn P
b) Tìm các giá trị x nguyên để P nhận giá trị nguyên
c) Tìm giá trị nhỏ nhất của biểu thức \(\dfrac{1}{P}\)
a: \(P=\left(\dfrac{2+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{1}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}+1}{1}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
b: Để P nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-1\)
\(\Leftrightarrow\sqrt{x}-1\in\left\{-1;1;2\right\}\)
hay \(x\in\left\{0;4;9\right\}\)
\(P=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\) với x>0;\(x\ne1;x\ne4\)
a, rút gọn
b, với giá trị nào của x thì P có giá trị =\(\dfrac{1}{4}\)
c, tìm giá trị của Ptại \(x=4+2\sqrt{3}\)
P = (\(\dfrac{1}{\sqrt{x}-1}\) - \(\dfrac{1}{\sqrt{x}}\)) : (\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\) - \(\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)) với 0 < \(x\) ≠ 1; 4
P = \(\dfrac{\sqrt{x}-\left(\sqrt{x}-1\right)}{\sqrt{x}.\left(\sqrt{x}-1\right)}\): (\(\dfrac{\left(\sqrt{x}+1\right).\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right).\left(\sqrt{x-2}\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}\))
P = \(\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\): \(\dfrac{x-1-\left(x-4\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}\)
P = \(\dfrac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\) : \(\dfrac{3}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}\)
P = \(\dfrac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\) \(\times\) \(\dfrac{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}{3}\)
P = \(\dfrac{\sqrt{x}-2}{3.\sqrt{x}}\)
P = \(\dfrac{\sqrt{x}.\left(\sqrt{x}-2\right)}{3x}\)
b, P = \(\dfrac{1}{4}\)
⇒ \(\dfrac{\sqrt{x}.\left(\sqrt{x}-2\right)}{3x}\) = \(\dfrac{1}{4}\)
⇒4\(x\) - 8\(\sqrt{x}\) = 3\(x\)
⇒ 4\(x\) - 8\(\sqrt{x}\) - 3\(x\) = 0
\(x\) - 8\(\sqrt{x}\) = 0
\(\sqrt{x}\).(\(\sqrt{x}\) - 8) = 0
\(\left[{}\begin{matrix}x=0\\\sqrt{x}=8\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=64\end{matrix}\right.\)
\(x=0\) (loại)
\(x\) = 64
Lời giải:
a. \(P=\frac{\sqrt{x}-(\sqrt{x}-1)}{\sqrt{x}(\sqrt{x}-1)}: \frac{(\sqrt{x}+1)(\sqrt{x}-1)-(\sqrt{x}-2)(\sqrt{x}+2)}{(\sqrt{x}-2)(\sqrt{x}-1)}\)
\(=\frac{1}{\sqrt{x}(\sqrt{x}-1)}: \frac{x-1-(x-4)}{(\sqrt{x}-2)(\sqrt{x}-1)}=\frac{1}{\sqrt{x}(\sqrt{x}-1)}:\frac{3}{(\sqrt{x}-1)(\sqrt{x}-2)}\\ =\frac{1}{\sqrt{x}(\sqrt{x}-1)}.\frac{(\sqrt{x}-1)(\sqrt{x}-2)}{3}=\frac{\sqrt{x}-2}{3\sqrt{x}}\)
b.
\(P=\frac{\sqrt{x}-2}{3\sqrt{x}}=\frac{1}{4}\\ \Rightarrow 4(\sqrt{x}-2)=3\sqrt{x}\\ \Leftrightarrow \sqrt{x}=8\Leftrightarrow x=64\)
(thỏa mãn)
c.
Tại $x=4+2\sqrt{3}=(\sqrt{3}+1)^2\Rightarrow \sqrt{x}=\sqrt{3}+1$
Khi đó:
$P=\frac{\sqrt{3}+1-2}{3(\sqrt{3}+1)}=\frac{2-\sqrt{3}}{3}$
* Cho:
A=\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\), với x>0 và x≠1
a. Rút gọn A
b. Tìm giá trị nhỏ nhất của A
a: Ta có: \(A=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=x-\sqrt{x}+1\)
Lời giải:
a.
\(A=\frac{\sqrt{x}(\sqrt{x}-1)(x+\sqrt{x}+1)}{x+\sqrt{x}+1}-\frac{\sqrt{x}(2\sqrt{x}+1)}{\sqrt{x}}+\frac{2(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}-1}\)
\(=\sqrt{x}(\sqrt{x}-1)-(2\sqrt{x}+1)+2(\sqrt{x}+1)\)
\(=x-\sqrt{x}+1\)
b.
\(A=x-\sqrt{x}+1=(\sqrt{x}-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}\)
Vậy $A_{\min}=\frac{3}{4}$ khi $\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}$
cho \(B=\left(\dfrac{\sqrt{1}}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x+1}}\right):\dfrac{\sqrt{x}}{x}\) + căn x với x>0 . Tìm giá trị nhỏ nhất của B
Cho biểu thức:
\(A=\left(1-\dfrac{\sqrt{x}}{\sqrt{x+1}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x+6}}\right)\)
a) Rút gọn A
b) Tìm x để A<0
c) Tìm giá trị nhỏ nhất của A
d) Tính giá trị nguyên của x để A nhận giá trị nguyên
Cho \(A=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left(\dfrac{2\left(x-2\sqrt{x}+1\right)}{x-1}\right)\)
Tìm x nguyên để A có giá trị nguyên ĐKXĐ: \(x>0; x\ne1\)
Ta có: \(A=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left(\dfrac{2\left(x-2\sqrt{x}+1\right)}{x-1}\right)\)
\(=\dfrac{x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}:\dfrac{2\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
Để A nguyên thì \(\sqrt{x}-1\in\left\{-1;1;2\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;2;3\right\}\)
hay \(x\in\left\{0;4;9\right\}\)
8) cho biểu thức: P= \(\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\div\dfrac{\sqrt{x}}{x+\sqrt{x}}\)
a) rút gọn P
b) tìm x để P= -1
c) tính P tại x= \(\dfrac{8}{\sqrt{5}-1}-\dfrac{8}{\sqrt{5}+1}\)
d) tìm giá trị nhỏ nhất của P
giúp mk vs ah mk cần gấp
a. ĐKXĐ: \(x>0\)
\(P=\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}}{x+\sqrt{x}}\)
\(=\dfrac{\sqrt{x}+1+x}{x+\sqrt{x}}.\dfrac{x+\sqrt{x}}{\sqrt{x}}=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
b. Để \(P=-1\) thÌ \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}=-1\)
\(\Leftrightarrow x+\sqrt{x}+1=-\sqrt{x}\)
\(\Leftrightarrow x+2\sqrt{x}+1=0\)
\(\Leftrightarrow\left(\sqrt{x}+1\right)^2=0\)
\(\Leftrightarrow\sqrt{x}+1=0\)
\(\Leftrightarrow\sqrt{x}=-1\) ( vô lý )
Vậy không có x thỏa mãn ycbt
c. Ta có \(x=\dfrac{8}{\sqrt{5}-1}-\dfrac{8}{\sqrt{5}+1}=\dfrac{8\sqrt{5}+8-8\sqrt{5}+8}{5-1}=\dfrac{16}{4}=4\)
Thay x=4 vào P, ta được
\(P=\dfrac{4+\sqrt{4}+1}{\sqrt{4}}=\dfrac{4+2+1}{2}=\dfrac{7}{2}\)
d. \(P=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\) \(\Rightarrow P-3=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}-3\)
\(\Rightarrow P-3=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}}=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)
Mà \(\left\{{}\begin{matrix}\left(\sqrt{x}-1\right)^2\ge0\\\sqrt{x}>0\end{matrix}\right.\) \(\Rightarrow P-3\ge0\Rightarrow P\ge3\)
Dấu "=" xảy ra khi \(\left(\sqrt{x}-1\right)^2=0\Leftrightarrow\sqrt{x}-1=0\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)
Vậy \(P_{min}=3\) khi \(x=1\)
\(A=\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\dfrac{4\sqrt{x}+12}{\sqrt{x}}\) (ĐK x>0; x\(\ne9\))
a)Rút gọn A và B
b) Tìm các giá trị của x để giá trị biểu thức A lớn hơn giá trị biểu thức B
a) \(A=\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=2\sqrt{7}-3\sqrt{7}+\dfrac{\sqrt{7}\left(\sqrt{7}+1\right)}{\sqrt{7}}-\left|\sqrt{7}+1\right|\)
\(=-\sqrt{7}+\sqrt{7}+1-\sqrt{7}-1=-\sqrt{7}\)
\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-3+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}=\dfrac{2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}\)
\(=\dfrac{8}{\sqrt{x}-3}\)
b) \(A>B\Rightarrow-\sqrt{7}>\dfrac{8}{\sqrt{x}-3}\Rightarrow\dfrac{8}{\sqrt{x}-3}+\sqrt{7}< 0\)
\(\Rightarrow\dfrac{\sqrt{7x}+8-3\sqrt{7}}{\sqrt{x}-3}< 0\)
Ta có: \(\left\{{}\begin{matrix}8=\sqrt{64}\\3\sqrt{7}=\sqrt{63}\end{matrix}\right.\Rightarrow8-3\sqrt{7}>0\Rightarrow8-3\sqrt{7}+\sqrt{7x}>0\)
\(\Rightarrow\sqrt{x}-3< 0\Rightarrow\sqrt{x}< 3\Rightarrow x< 9\Rightarrow0< x< 9\)