Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Chibi Sieu Quay

cho bt A=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left[\dfrac{2}{x}-\dfrac{2-x}{x\left(\sqrt{x}+1\right)}\right]\)

a)rút gọn bt A

b)tính giá trị của bt A khi\(x=4+2\sqrt{3}\)

c)tìm giá trị của x để bt \(\sqrt{A}\)có giá trị nỏ nhất

 

 

Chibi Sieu Quay
5 tháng 5 2021 lúc 11:22

tìm cả đk giúp mik vs

Nguyễn Việt Lâm
5 tháng 5 2021 lúc 16:47

ĐKXĐ: \(x>0;x\ne1\)

\(A=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{2\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}-\dfrac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)

\(=\left(\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{x+2\sqrt{x}}{x\left(\sqrt{x}+1\right)}\right)\)

\(=\dfrac{\left(x+2\sqrt{x}\right).x.\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+2\sqrt{x}\right)}=\dfrac{x}{\sqrt{x}-1}\)

b.

\(x=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}+1\)

\(\Rightarrow A=\dfrac{4+2\sqrt{3}}{\sqrt{3}+1-1}=\dfrac{4+2\sqrt{3}}{\sqrt{3}}=\dfrac{6+4\sqrt{3}}{3}\)

c.

Để \(\sqrt{A}\) xác định \(\Rightarrow\sqrt{x}-1>0\Rightarrow x>1\)

Ta có:

\(\sqrt{A}=\sqrt{\dfrac{x}{\sqrt{x}-1}}=\sqrt{\dfrac{x}{\sqrt{x}-1}-4+4}=\sqrt{\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-1}+4}\ge\sqrt{4}=2\)

Dấu "=" xảy ra khi \(\sqrt{x}-2=0\Rightarrow x=4\)


Các câu hỏi tương tự
Chibi Sieu Quay
Xem chi tiết
Hug Hug - 3 cục bánh bao...
Xem chi tiết
Nguyễn Ngọc Thùy Duyên
Xem chi tiết
Trúc Nguyễn
Xem chi tiết
Nguyễn Ngọc Thùy Duyên
Xem chi tiết
Nguyễn Ngọc Thùy Duyên
Xem chi tiết
gấu béo
Xem chi tiết
Nguyễn Ngọc Thùy Duyên
Xem chi tiết
Vangull
Xem chi tiết