tinh x3+y3-3(x+y)+2010
biet \(x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}};y=\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17-12\sqrt{2}}\)
Cho A = x3 + y3 - 3(x + y) + 2020. Tính giá trị biểu thức A với:
x = \(\sqrt[3]{9+4\sqrt{5}}\) + \(\sqrt[3]{9-4\sqrt{5}}\) và y = \(\sqrt[3]{3+2\sqrt{2}}\)+ \(\sqrt[3]{3-2\sqrt{2}}\)
Các cậu giải hộ mk vs mk đang cần gấp
x3 + y3 - 3(x +y) +2020 nha các cậu
Đặt \(a=\sqrt[3]{9+4\sqrt{5}},b=\sqrt[3]{9-4\sqrt{5}}\)
\(\Rightarrow\hept{\begin{cases}a^3+b^3=18\\ab=1\end{cases};a+b=x}\)
Ta có: \(x=a+b\Leftrightarrow x^3=\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)\(\Rightarrow x^3=18+3x\Leftrightarrow x^3-3x=18\)(1)
Tương tự: Đặt \(c=\sqrt[3]{3+2\sqrt{2}},d=\sqrt[3]{3-2\sqrt{2}}\)
\(\Rightarrow\hept{\begin{cases}c^3+d^3=6\\cd=1\end{cases};c+d=y}\)
Ta có: \(y=c+d\Leftrightarrow y^3=\left(c+d\right)^3=c^3+d^3+3cd\left(c+d\right)\)\(\Rightarrow y^3=6+3y\)
\(\Leftrightarrow y^3-3y=6\)(2)
Từ (1) và (2) suy ra \(A=x^3-3x+y^3-3y+2020=18+6+2020=2048\)
áp dụng hằng đẳng thức:\(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)ta có
\(x=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)
\(\Rightarrow x^3=9+4\sqrt{5}+9-4\sqrt{5}+3\sqrt[3]{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}.\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt[3]{5}}\right)\)
\(\Rightarrow x^3=18+3.1.x\)
\(\Rightarrow x^3-3x-18=0\)(1)
\(y=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)
\(\Rightarrow y^3=3+2\sqrt{2}+3-2\sqrt{2}+3\sqrt{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}.\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\)
\(\Rightarrow y^3=6+3.1.y\Rightarrow y^3-3y-6=0\)(2)
từ (1), (2) ta có:\(A=x^3+y^3-3x-3y+2020=x^3-3x-18+y^3-3y-6+2044=2044\)
cho \(x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{2-2\sqrt{2}};y=\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17-12\sqrt{2}}.\)
Tinh \(P=x^3+y^3-3\left(x+y\right)\)
Rút gọn:
\(A=\dfrac{\sqrt[3]{x^4}+\sqrt[3]{x^2y^2}+\sqrt[3]{y^4}}{\sqrt[3]{x^2}+\sqrt[3]{xy}+\sqrt[3]{y^2}}\)
\(B=\dfrac{\sqrt[3]{xy}\left(\sqrt[3]{y^2}-\sqrt[3]{x^2}\right)+\left(\sqrt[3]{x^4}-\sqrt[3]{y^4}\right)}{\sqrt[3]{x^4}+\sqrt[3]{x^2y^2}-\sqrt[3]{x^3y}}.\sqrt[3]{x^2}\)
\(C=\left(\dfrac{x\sqrt[3]{x}-2x\sqrt[3]{y}+\sqrt[3]{x^2y^2}}{\sqrt[3]{x^2}-\sqrt[3]{xy}}+\dfrac{\sqrt[3]{x^2y}-\sqrt[3]{xy^2}}{\sqrt[3]{x}-\sqrt[3]{y}}\right).\dfrac{1}{\sqrt[3]{x^2}}\)
cho x,y,z>0 và x3+y3+z3=1.
CMR:\(\dfrac{x^2}{\sqrt{1-x^2}}+\dfrac{y^2}{\sqrt{1-y^2}}+\dfrac{z^2}{\sqrt{1-z^2}}\ge2\)
Ta có với x,y,z >0 thì:\(\dfrac{x^2}{\sqrt{1-x^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}\)
Bất đẳng thức Cô si ta có:
\(x\sqrt{1-x^2}\le\dfrac{x^2+1-x^2}{2}=\dfrac{1}{2}\\ \Rightarrow\dfrac{1}{x\sqrt{1-x^2}}\ge2\\ \Rightarrow\dfrac{x^3}{x\sqrt{1-x^2}}\ge2x^3\Leftrightarrow\dfrac{x^2}{\sqrt{1-x^2}}\ge2x^3\)
Tương tự: \(\dfrac{y^2}{\sqrt{1-y^2}}\ge2y^3;\dfrac{z^2}{\sqrt{1-z^2}}\ge2z^3\)
Từ đó ta có:\(\dfrac{x^2}{\sqrt{1-x^2}}+\dfrac{y^2}{\sqrt{1-y^2}}+\dfrac{z^2}{\sqrt{1-z^2}}\ge2\left(x^3+y^3+z^3\right)=2\left(dpcm\right)\)
\begin{cases}
x+\sqrt{x(x^2-3x+3)}=\sqrt[3]{y+2}+\sqrt{y+3}+1 & \\
3\sqrt{x-1}-\sqrt{x^2-6x+6}=\sqrt[3]{y+2}+1
\end{cases}
\begin{cases}
y^2+x^3-x^2+2\sqrt[3]{y^4}+\sqrt[3]{y^2}=2x\sqrt{x-1}(y+\sqrt[3]{y}) & \\
y^4+\sqrt{y^3-y^2+1}=y(x-1)^3+1
\end{cases}
Cho x,y,a tm:
\(\sqrt{x^2+\sqrt[3]{x^4y^2}}+\sqrt{y^2+\sqrt[3]{y^4x^2}}=a\)
CMR: \(\sqrt[3]{a^2}+\sqrt[3]{y^2}=\sqrt[3]{a^2}\)
Kiểm tra lại đề bài đi em, chỗ CMR đó
Đặt \(\sqrt[3]{x^2}=m\Leftrightarrow x^2=m^3;\sqrt[3]{y^2}=n\Leftrightarrow y^2=n^3\)
Thay vào biểu thức:
\(\Leftrightarrow\sqrt{m^3+m^2n}+\sqrt{n^3+mn^2}=a\\ \Leftrightarrow m^3+n^3+mn\left(m+n\right)+2\sqrt{\left(m^3+m^2n\right)\left(n^3+mn^2\right)}=a^2\\ \Leftrightarrow m^3+n^3+mn\left(m+n\right)+2\sqrt{m^2n^2\left(m+n\right)}=a^2\\ \Leftrightarrow m^3+n^3+3mn\left(m+n\right)=a^2\\ \Leftrightarrow\left(m+n\right)^3=a^2\\ \Leftrightarrow m+n=\sqrt[3]{a^2}\\ \Leftrightarrow\sqrt[3]{x^2}+\sqrt[3]{y^2}=\sqrt[3]{a^2}\)
Em chắc chắn là đề bài đúng chứ? Trước khi nhìn kĩ lại?
Cho x=\(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\),y=\(\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17-12\sqrt{2}}\)
Tính P=\(x^3+y^3-3\left(x+y\right)+1979\)
mong mọi người giúp thanks you
\(x^3=3+2\sqrt{2}+3-2\sqrt{2}+3\cdot\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\\ \Leftrightarrow x^3=6+3x\sqrt[3]{1}\\ \Leftrightarrow x^3-3x=6\)
\(y^3=17+12\sqrt{2}+17-12\sqrt{2}+3\sqrt[3]{\left(17-12\sqrt{2}\right)\left(17+12\sqrt{2}\right)}\left(\sqrt[3]{17-12\sqrt{2}}+\sqrt[3]{17+12\sqrt{2}}\right)\\ \Leftrightarrow y^3=34+3x\sqrt[3]{1}\\ \Leftrightarrow y^3-3y=34\)
Thay vào P, ta được
\(P=x^3+y^3-3x-3y+1979\\ P=\left(x^3-3x\right)+\left(y^3-3y\right)+1979\\ P=6+34+1979=2019\)
\(x^3=6+3\sqrt[3]{\left(3+2\sqrt[]{2}\right)\left(3-2\sqrt[]{2}\right)}\left(\sqrt[3]{3+2\sqrt[]{2}}+\sqrt[3]{3-2\sqrt[]{2}}\right)\)
\(\Rightarrow x^3=6+3x\)
\(\Rightarrow x^3-3x=6\)
Tương tự:
\(y^3=34+3\sqrt[3]{\left(17+12\sqrt[]{2}\right)\left(17-12\sqrt[]{2}\right)}\left(\sqrt[3]{17+12\sqrt[]{2}}+\sqrt[3]{17-12\sqrt[]{2}}\right)\)
\(\Rightarrow y^3=34+3y\)
\(\Rightarrow y^3-3y=34\)
Do đó:
\(P=\left(x^3-3x\right)+\left(y^3-3y\right)+1979=6+34+1979=...\)
Tính giá trị của biểu thức \(P=x^3+y^3-3\left(x+y\right)+2009\)
trong đó: \(x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)
\(y=\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17-12\sqrt{2}}\)
\(x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)
\(\Rightarrow x^3=3+2\sqrt{2}+3-2\sqrt{2}+3\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\)
\(=6+3\sqrt[3]{9-8}.x=6+3x\)
\(\Rightarrow x^3-3x=6\)
\(y=\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17-12\sqrt{2}}\)
\(\Rightarrow y^3=17+12\sqrt{2}+17-12\sqrt{2}+3\sqrt[3]{\left(17+12\sqrt{2}\right)\left(17-12\sqrt{2}\right)}\left(\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17-12\sqrt{2}}\right)\)
\(=34+3\sqrt[3]{289-288}.y=34+3y\)
\(\Rightarrow y^3-3y=34\)
\(P=x^3+y^3-3\left(x+y\right)+2009=\left(x^3-3x\right)+\left(y^3-3y\right)+2009\)
\(=6+34+2009=2049\)
Tính GTBT: \(M=\left(x-y\right)^3+3\left(x-y\right)\left(xy+1\right)\) biết
\(x=\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\)
\(y=\sqrt[3]{17+12\sqrt{2}}-\sqrt[3]{17-12\sqrt{2}}\)
Có \(x^3=3+2\sqrt{2}-3\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\right)-\left(3-2\sqrt{2}\right)\)
\(\Leftrightarrow x^3=4\sqrt{2}-3x\) \(\Leftrightarrow x^3+3x=4\sqrt{2}\) (1)
Có \(y^3=17+12\sqrt{2}-3\sqrt[3]{\left(17+12\sqrt{2}\right)\left(17-12\sqrt{2}\right)}\left(\sqrt[3]{17+12\sqrt{2}}-\sqrt[3]{17-12\sqrt{2}}\right)-\left(17-12\sqrt{2}\right)\)
\(\Leftrightarrow y^3=24\sqrt{2}-3y\) \(\Leftrightarrow y^3+3y=24\sqrt{2}\) (2)
Từ (1) (2)\(\Rightarrow x^3+3x-y^3-3y=-20\sqrt{2}\)
Có \(M=\left(x-y\right)^3+3\left(x-y\right)\left(xy+1\right)=\left(x-y\right)\left[\left(x-y\right)^2+3\left(xy+1\right)\right]\)
\(=\left(x-y\right)\left(x^2+xy+y^2+3\right)=x^3-y^3+3\left(x-y\right)=-20\sqrt{2}\)
Vậy \(M=-20\sqrt{2}\)
theo bài ra
\(x=\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\)
\(=>x^3=\left(\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\right)^3\)
\(x^3=4\sqrt{2}-3\left[\left(\sqrt[3]{3+2\sqrt{2}}\right)\left(\sqrt[3]{3-2\sqrt{2}}\right)\right]\left[\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\right]\)
\(x^3=4\sqrt{2}-3\left[\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\right].x\)
\(x^3=4\sqrt{2}-3.\left[\sqrt[3]{9-\left(2\sqrt{2}\right)^2}\right]x\)
\(x^3=4\sqrt{2}-3.1x\)
\(x^3=4\sqrt{2}-3x\)
\(< =>x^3+3x-4\sqrt{2}=0\)
rồi làm y tương tự rồi thế vào M là ra