Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hảo Hiếu Dũng
Xem chi tiết
Hảo Hiếu Dũng
21 tháng 10 2020 lúc 20:30

x3  + y3 - 3(x +y) +2020 nha các cậu

Khách vãng lai đã xóa
KCLH Kedokatoji
21 tháng 10 2020 lúc 20:38

Đặt \(a=\sqrt[3]{9+4\sqrt{5}},b=\sqrt[3]{9-4\sqrt{5}}\)

\(\Rightarrow\hept{\begin{cases}a^3+b^3=18\\ab=1\end{cases};a+b=x}\)

Ta có: \(x=a+b\Leftrightarrow x^3=\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)\(\Rightarrow x^3=18+3x\Leftrightarrow x^3-3x=18\)(1)

Tương tự: Đặt \(c=\sqrt[3]{3+2\sqrt{2}},d=\sqrt[3]{3-2\sqrt{2}}\)

\(\Rightarrow\hept{\begin{cases}c^3+d^3=6\\cd=1\end{cases};c+d=y}\)

Ta có: \(y=c+d\Leftrightarrow y^3=\left(c+d\right)^3=c^3+d^3+3cd\left(c+d\right)\)\(\Rightarrow y^3=6+3y\)

\(\Leftrightarrow y^3-3y=6\)(2)

Từ (1) và (2) suy ra \(A=x^3-3x+y^3-3y+2020=18+6+2020=2048\)

Khách vãng lai đã xóa
Phạm Nguyễn Hồng Chi
21 tháng 10 2020 lúc 20:48

áp dụng hằng đẳng thức:\(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)ta có

\(x=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)

\(\Rightarrow x^3=9+4\sqrt{5}+9-4\sqrt{5}+3\sqrt[3]{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}.\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt[3]{5}}\right)\)

\(\Rightarrow x^3=18+3.1.x\)

\(\Rightarrow x^3-3x-18=0\)(1)

\(y=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)

\(\Rightarrow y^3=3+2\sqrt{2}+3-2\sqrt{2}+3\sqrt{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}.\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\)

\(\Rightarrow y^3=6+3.1.y\Rightarrow y^3-3y-6=0\)(2)

từ (1), (2) ta có:\(A=x^3+y^3-3x-3y+2020=x^3-3x-18+y^3-3y-6+2044=2044\)

Khách vãng lai đã xóa
daomanh tung
Xem chi tiết
Tran Van Hoang
18 tháng 9 2018 lúc 20:05

Có sai đề k bạn

Thai Nguyen
Xem chi tiết
ho huu
Xem chi tiết
Nguyễn Trịnh Phú Vinh
3 tháng 10 2023 lúc 18:02

Ta có với x,y,z >0 thì:\(\dfrac{x^2}{\sqrt{1-x^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}\)
Bất đẳng thức Cô si ta có:
\(x\sqrt{1-x^2}\le\dfrac{x^2+1-x^2}{2}=\dfrac{1}{2}\\ \Rightarrow\dfrac{1}{x\sqrt{1-x^2}}\ge2\\ \Rightarrow\dfrac{x^3}{x\sqrt{1-x^2}}\ge2x^3\Leftrightarrow\dfrac{x^2}{\sqrt{1-x^2}}\ge2x^3\)
Tương tự: \(\dfrac{y^2}{\sqrt{1-y^2}}\ge2y^3;\dfrac{z^2}{\sqrt{1-z^2}}\ge2z^3\)
Từ đó ta có:\(\dfrac{x^2}{\sqrt{1-x^2}}+\dfrac{y^2}{\sqrt{1-y^2}}+\dfrac{z^2}{\sqrt{1-z^2}}\ge2\left(x^3+y^3+z^3\right)=2\left(dpcm\right)\)
 

Thanh Tuyền
Xem chi tiết
ILoveMath
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 9 2021 lúc 17:16

Kiểm tra lại đề bài đi em, chỗ CMR đó

Monkey D. Luffy
15 tháng 9 2021 lúc 17:18

Đặt \(\sqrt[3]{x^2}=m\Leftrightarrow x^2=m^3;\sqrt[3]{y^2}=n\Leftrightarrow y^2=n^3\)

Thay vào biểu thức:

\(\Leftrightarrow\sqrt{m^3+m^2n}+\sqrt{n^3+mn^2}=a\\ \Leftrightarrow m^3+n^3+mn\left(m+n\right)+2\sqrt{\left(m^3+m^2n\right)\left(n^3+mn^2\right)}=a^2\\ \Leftrightarrow m^3+n^3+mn\left(m+n\right)+2\sqrt{m^2n^2\left(m+n\right)}=a^2\\ \Leftrightarrow m^3+n^3+3mn\left(m+n\right)=a^2\\ \Leftrightarrow\left(m+n\right)^3=a^2\\ \Leftrightarrow m+n=\sqrt[3]{a^2}\\ \Leftrightarrow\sqrt[3]{x^2}+\sqrt[3]{y^2}=\sqrt[3]{a^2}\)

Nguyễn Việt Lâm
15 tháng 9 2021 lúc 17:22

Em chắc chắn là đề bài đúng chứ? Trước khi nhìn kĩ lại?

undefined

Vinne
Xem chi tiết
Nguyễn Hoàng Minh
6 tháng 9 2021 lúc 16:03

\(x^3=3+2\sqrt{2}+3-2\sqrt{2}+3\cdot\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\\ \Leftrightarrow x^3=6+3x\sqrt[3]{1}\\ \Leftrightarrow x^3-3x=6\)

\(y^3=17+12\sqrt{2}+17-12\sqrt{2}+3\sqrt[3]{\left(17-12\sqrt{2}\right)\left(17+12\sqrt{2}\right)}\left(\sqrt[3]{17-12\sqrt{2}}+\sqrt[3]{17+12\sqrt{2}}\right)\\ \Leftrightarrow y^3=34+3x\sqrt[3]{1}\\ \Leftrightarrow y^3-3y=34\)

Thay vào P, ta được

\(P=x^3+y^3-3x-3y+1979\\ P=\left(x^3-3x\right)+\left(y^3-3y\right)+1979\\ P=6+34+1979=2019\)

 

Nguyễn Việt Lâm
6 tháng 9 2021 lúc 16:00

\(x^3=6+3\sqrt[3]{\left(3+2\sqrt[]{2}\right)\left(3-2\sqrt[]{2}\right)}\left(\sqrt[3]{3+2\sqrt[]{2}}+\sqrt[3]{3-2\sqrt[]{2}}\right)\)

\(\Rightarrow x^3=6+3x\)

\(\Rightarrow x^3-3x=6\)

Tương tự:

\(y^3=34+3\sqrt[3]{\left(17+12\sqrt[]{2}\right)\left(17-12\sqrt[]{2}\right)}\left(\sqrt[3]{17+12\sqrt[]{2}}+\sqrt[3]{17-12\sqrt[]{2}}\right)\)

\(\Rightarrow y^3=34+3y\)

\(\Rightarrow y^3-3y=34\)

Do đó:

\(P=\left(x^3-3x\right)+\left(y^3-3y\right)+1979=6+34+1979=...\)

Võ Thùy Trang
Xem chi tiết
Lấp La Lấp Lánh
5 tháng 10 2021 lúc 21:54

\(x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)

\(\Rightarrow x^3=3+2\sqrt{2}+3-2\sqrt{2}+3\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\)

\(=6+3\sqrt[3]{9-8}.x=6+3x\)

\(\Rightarrow x^3-3x=6\)

\(y=\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17-12\sqrt{2}}\)

\(\Rightarrow y^3=17+12\sqrt{2}+17-12\sqrt{2}+3\sqrt[3]{\left(17+12\sqrt{2}\right)\left(17-12\sqrt{2}\right)}\left(\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17-12\sqrt{2}}\right)\)

\(=34+3\sqrt[3]{289-288}.y=34+3y\)

\(\Rightarrow y^3-3y=34\)

\(P=x^3+y^3-3\left(x+y\right)+2009=\left(x^3-3x\right)+\left(y^3-3y\right)+2009\)

\(=6+34+2009=2049\)

Trúc Giang
Xem chi tiết
Lê Thị Thục Hiền
18 tháng 6 2021 lúc 15:37

Có \(x^3=3+2\sqrt{2}-3\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\right)-\left(3-2\sqrt{2}\right)\)

\(\Leftrightarrow x^3=4\sqrt{2}-3x\) \(\Leftrightarrow x^3+3x=4\sqrt{2}\) (1)

Có \(y^3=17+12\sqrt{2}-3\sqrt[3]{\left(17+12\sqrt{2}\right)\left(17-12\sqrt{2}\right)}\left(\sqrt[3]{17+12\sqrt{2}}-\sqrt[3]{17-12\sqrt{2}}\right)-\left(17-12\sqrt{2}\right)\)

\(\Leftrightarrow y^3=24\sqrt{2}-3y\) \(\Leftrightarrow y^3+3y=24\sqrt{2}\) (2)

Từ (1) (2)\(\Rightarrow x^3+3x-y^3-3y=-20\sqrt{2}\)

Có \(M=\left(x-y\right)^3+3\left(x-y\right)\left(xy+1\right)=\left(x-y\right)\left[\left(x-y\right)^2+3\left(xy+1\right)\right]\)

\(=\left(x-y\right)\left(x^2+xy+y^2+3\right)=x^3-y^3+3\left(x-y\right)=-20\sqrt{2}\)

Vậy \(M=-20\sqrt{2}\)

missing you =
18 tháng 6 2021 lúc 15:42

theo bài ra

\(x=\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\)

\(=>x^3=\left(\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\right)^3\)

\(x^3=4\sqrt{2}-3\left[\left(\sqrt[3]{3+2\sqrt{2}}\right)\left(\sqrt[3]{3-2\sqrt{2}}\right)\right]\left[\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\right]\)

\(x^3=4\sqrt{2}-3\left[\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\right].x\)

\(x^3=4\sqrt{2}-3.\left[\sqrt[3]{9-\left(2\sqrt{2}\right)^2}\right]x\)

\(x^3=4\sqrt{2}-3.1x\)

\(x^3=4\sqrt{2}-3x\)

\(< =>x^3+3x-4\sqrt{2}=0\)

rồi làm y tương tự rồi thế vào M là ra