cho các số a,b,c tùy ý và:\(a\ge b\ge c\ge d\ge0\). CMR:
1.\(a^2-b^2+c^2\ge\left(a-b-c\right)^2\)
cho các số a,b,c,d tùy ý và \(a\ge b\ge c\ge d\ge0\)chung minh :1)\(a^2-b^2+c^2\ge\left(a-b+c\right)^2\);2)\(a^2-b^2+c^2-d^2\ge\left(a-b+c-d\right)^2\).dấu bằng của bất đẳng thức xảy ra khi nào
vào các câu hỏi của hoàng tử lớp học mà xem nhóc ạ
Chào!Sao cậu lại đặt tên là"Tôi là ai"vậy.Cụm từ đó có ý nghĩa gì?
cho các số a,b,c,d tuý ý và \(a\ge b\ge c\ge d\ge0...\)
chứng minh 1) \(a^2-b^2+c^2\ge\left(a-b+c\right)^2...\)
2) \(a^2-b^2+c^2-d^2\ge\left(a-b+c-d\right)^2...\)
DẤU BẰNG XẢY RA KHI NÀO? (chú ý giải đầy đủ th dấu bằng xảy ra nha có liền 3 tick)
1/ \(a^2-b^2+c^2\ge\left(a-b+c\right)^2\)
\(\Leftrightarrow bc-ac-b^2+ab\ge0\)
\(\Leftrightarrow\left(bc-ac\right)+\left(ab-b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\ge0\)(đúng)
Vì \(\hept{\begin{cases}a\ge b\\b\ge c\end{cases}}\)
2/ \(a^2-b^2+c^2-d^2\ge\left(a-b+c-d\right)^2\)
\(\Leftrightarrow-d^2+cd-bd+ad+bc-ac-b^2+ab\ge0\)
\(\Leftrightarrow\left(dc-d^2\right)+\left(ad-bd\right)+\left(bc-ac\right)+\left(ba-b^2\right)\ge0\)
\(\Leftrightarrow d\left(c-d\right)+d\left(a-b\right)+\left(a-b\right)\left(b-c\right)\ge0\)
Đúng vì \(a\ge b\ge c\ge d\ge0\)
cho các số thực \(a\ge b\ge c\ge d\ge0\) chứng minh:
a, \(a^2-b^2+c^2\ge\left(a-b+c\right)^2\)
b, \(a^2-b^2+c^2-d^2\ge\left(a-b+c-d\right)^2\)
help me
1. Cho a,b,c t/m: \(\left\{{}\begin{matrix}a\ge\dfrac{4}{3}\\b\ge\dfrac{4}{3}\\c\ge\dfrac{4}{3}\end{matrix}\right.\) và \(a+b+c=6\)
\(CMR:\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}+\dfrac{c}{c^2+1}\ge\dfrac{6}{5}\)
2. Cho x,y >0 t/m: \(2x+3y-13\ge0\)
Tìm min \(P=x^2+3x+\dfrac{4}{x}+y^2+\dfrac{9}{y}\)
Xét \(\dfrac{a}{a^2+1}+\dfrac{3\left(a-2\right)}{25}-\dfrac{2}{5}=\dfrac{a}{a^2+1}+\dfrac{3a-16}{25}=\dfrac{\left(3a-4\right)\left(a-2\right)^2}{25\left(a^2+1\right)}\ge0\)
\(\Rightarrow\dfrac{a}{a^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(a-2\right)}{25}\)
CMTT \(\Rightarrow\left\{{}\begin{matrix}\dfrac{b}{b^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(b-2\right)}{25}\\\dfrac{c}{c^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(c-2\right)}{25}\end{matrix}\right.\)
Cộng vế theo vế:
\(\Rightarrow VT\ge\dfrac{2}{5}+\dfrac{2}{5}+\dfrac{2}{5}-\dfrac{3\left(a-2\right)+3\left(b-2\right)+3\left(c-2\right)}{25}\ge\dfrac{6}{5}-\dfrac{3\left(a+b+c-6\right)}{25}=\dfrac{6}{5}\)
Dấu \("="\Leftrightarrow a=b=c=2\)
Cho a,b,c là các số thực dương thỏa mãn:\(a^2+b^2+c^2=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\).
1,Tính a+b+c ,biết rằng ab+bc+ca=9
2,CMR nếu c≥a, c≥b thì c≥a+b
1) \(a^2+b^2+c^2=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2=a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\)
\(\Leftrightarrow a^2+b^2+c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca-4ab-4bc-4ca=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=4\left(ab+bc+ca\right)=36\)
Mà \(a;b;c\in R^+\Rightarrow a+b+c>0\)
\(\Rightarrow a+b+c=6\)
Tìm GTLN của biểu thức
\(B=a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)\)
biết \(a\ge b\ge c\ge0\)và a+b+c=1
Chứng minh rằng với a, b, c, d tùy ý ta luôn có:
\(a^2+b^2+c^2+d^2\ge\left(a+b\right)\left(c+d\right)\)
dễ lăm chỉ cần áp dụng bài toán phụ a2+b2>=2ab là ra chúc bạn làm được bài tốt nhé mình chỉ gợi ý cho thôi
vũ tiền châu: Bạn có thể nói rõ hơn một chút được không ạ? Vậy có cần biến đổi c^2+ d^2>=2cd không?
CMR:
a,(\(a^4+b^4\)) ≥ \(\left(a+b\right)^4\)
b,\(\left(a^2+b^2\right)\)≥ \(ab\left(a+b\right)^2\)
c, \(a^2+b^2+c^2\)≥ a(b+c)
d, \(a^2+b^2+c^2+d^2\)≥ a(b+c+d)
Cho a,b,c là số dương. CMR:
1. \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)
2. \(a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}\le a^3+b^3+c^3\)
3. \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 3\sqrt[3]{\frac{1}{(a+1)(b+1)(c+1)}}$
$\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\geq 3\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}$
Cộng theo vế và thu gọn:
$\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$
$\Leftrightarrow 3\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$
$\Rightarrow (a+1)(b+1)(c+1)\geq (1+\sqrt[3]{abc})^3$
Ta có đpcm.
Bài 2:
$a^3+a^3+a^3+a^3+b^3+c^3\geq 6\sqrt[6]{a^{12}b^3c^3}=6a^2\sqrt{bc}$
$b^3+b^3+b^3+b^3+a^3+c^3\geq 6b^2\sqrt{ac}$
$c^3+c^3+c^3+c^3+a^3+b^3\geq 6c^2\sqrt{ab}$
Cộng theo vế và rút gọn thu được:
$a^3+b^3+c^3\geq a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c$
Bài 3:
Áp dụng BĐT Cauchy-Schwarz:
$\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\geq \frac{(a+b+c)^2}{b+c+c+a+a+b}=\frac{(a+b+c)^2}{2(a+b+c)}=\frac{a+b+c}{2}$
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c$