Cho a,b,c là số dương. CMR:
1. \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)
2. \(a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}\le a^3+b^3+c^3\)
3. \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\)
CM BĐT sau
a/ \(\left(a^2-b^2\right)\left(c^2-d^2\right)\le\left(ac-bd\right)^2\) \(\forall a,b,c,d\)
b/ \(\left(1+a^2\right)\left(1+b^2\right)\ge\left(1+ab\right)^2\) \(\forall a,b\)
c/ \(a^2+b^2+1\ge ab+a+b\) \(\forall a,b\)
Cho a,b,c là 3 số thức dương thỏa mãn a + b + c = 1/a + 1/b + 1/c . CMR
2( a + b + c) \(\ge\) \(\sqrt{a^2+3}+\sqrt{b^2+3}+\sqrt{c^2+3}\)
Giải:
Dễ thấy bđt cần cm tương đương với mỗi bđt trong dãy sau:
\(\left(2a-\sqrt{a^2+3}\right)+\left(2b-\sqrt{b^2+3}\right)+\left(2c-\sqrt{c^2+3}\right)\ge0\),
\(\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}\ge0\),
\(\dfrac{\dfrac{a^2-1}{a}}{2+\sqrt{1+\dfrac{3}{a^2}}}+\dfrac{\dfrac{b^2-1}{b}}{2+\sqrt{1+\dfrac{3}{b^2}}}+\dfrac{\dfrac{c^2-1}{c}}{2+\sqrt{1+\dfrac{3}{b^2}}}\ge0\)
Các bđt trên đầu mang tính đối xứng giữa các biến nên k mất tính tổng quát ta có thể giả sử \(a\ge b\ge c\)
=> \(\dfrac{a^2-1}{a}\ge\dfrac{b^2-1}{b}\ge\dfrac{c^2-1}{c}\)
và \(\dfrac{1}{2+\sqrt{1+\dfrac{3}{a^2}}}\ge\dfrac{1}{2+\sqrt{1+\dfrac{3}{b^2}}}\ge\dfrac{1}{2+\sqrt{1+\dfrac{3}{c^2}}}\)
Áp dụng bđt Chebyshev có:
\(\dfrac{\dfrac{a^2-1}{a}}{2+\sqrt{1+\dfrac{3}{a^2}}}+\dfrac{\dfrac{b^2-1}{b}}{2+\sqrt{1+\dfrac{3}{b^2}}}+\dfrac{\dfrac{c^2-1}{c}}{2+\sqrt{1+\dfrac{3}{c^2}}}\ge\dfrac{1}{3}\left(\sum\dfrac{a^2-1}{a}\right)\left(\sum\dfrac{1}{2+\sqrt{1+\dfrac{3}{a^2}}}\right)\)
Theo gia thiết lại có: \(\sum\dfrac{a^2-1}{a}=\left(a+b+c\right)-\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=0\)
nên ta có thể suy ra \(\dfrac{\dfrac{a^2-1}{a}}{2+\sqrt{1+\dfrac{3}{a^2}}}+\dfrac{\dfrac{b^2-1}{b}}{2+\sqrt{1+\dfrac{3}{b^2}}}+\dfrac{\dfrac{c^2-1}{c}}{2+\sqrt{1+\dfrac{3}{c^2}}}\ge0\)
Vì vậy bđt đã cho ban đầu cũng đúng.
Cho ba số thực dương a, b, c. Chứng minh rằng:
a) \(\left(a+\frac{4b}{c^2}\right)\left(b+\frac{4c}{a^2}\right)\left(c+\frac{4a}{b^2}\right)\ge64\)
b) \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)
Cho a,b,c dương. Chứng minh
\(\dfrac{1}{\left(a+b\right)^2}+\dfrac{1}{\left(b+c\right)^2}+\dfrac{1}{\left(c+a\right)^2}\ge\dfrac{3\sqrt{3abc\left(a+b+c\right)}.\left(a+b+c\right)^2}{4\left(ab+bc+ca\right)^3}\)
Cho a,b,c > 0 và các số x,y,z dương . CHứng minh rằng
\(\dfrac{a\left(z^2+y^2\right)}{b+c}+\dfrac{b\left(x^2+z^2\right)}{a+c}+\dfrac{c\left(x^2+y^2\right)}{a+b}\ge xy+yz+xz\)
Bài 3. Cho \(a,b,c\in R\). Chứng minh các bất đẳng thức sau:
\(a,\frac{a^2+3}{\sqrt{a^2+2}}>2\)
\(b,\left(a^5+b^5\right)\left(a+b\right)\ge\left(a^4+b^4\right)\left(a^2+b^2\right)\) \(\left(ab>0\right)\)
\(c,\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge256abcd\)
Cho 3 số dương a,b,c
CMR : \(\dfrac{1}{\left(a+b\right)^2}+\dfrac{1}{\left(b+c\right)^2}+\dfrac{1}{\left(a+c\right)^2}\ge\dfrac{9}{4\left(ab+ac+bc\right)}\)
cho a,b,c là 3 số dương thỏa mãn điều kiện abc=1
chứng minh
\(\frac{2}{a^3\left(b+c\right)}+\frac{2}{b^3\left(c+a\right)}+\frac{2}{c^3\left(a+b\right)}\ge ab+bc+ca\)