c) theo bđt cauchy ta có
\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+1\ge2b\\a^2+1\ge2a\end{matrix}\right.\)
cộng hết lại rút 2 đi \(\Rightarrowđpcm\)
b)theo bđt bunhiacopxki ta có
\(\left(1^2+a^2\right)\left(1^2+b^2\right)\ge\left(1+ab\right)^2\)
\(\Rightarrowđpcm\)
theo bđt cauchy ta có
\(-\left(a^2d^2+b^2c^2\right)\le-2abcd\)
\(\Leftrightarrow a^2c^2-a^2d^2+b^2d^2-b^2c^2\le a^2c^2-2abcd+b^2d^2\)
\(\Leftrightarrow a^2(c^2-d^2)-b^2(c^2-d^2)\le a^2c^2-2abcd+b^2d^2\)
\(\Leftrightarrow(c^2-d^2)\left(a^2-b^2\right)\le(ac-bd)^2\)
\(\Rightarrowđpcm\)