a ) \(x^2+4y^2+3z^2+14\ge2x+12y+6z\)
\(\Leftrightarrow x^2-2x+1+4y^2-12y+9+3z^2-6z+3+1\ge0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+3\left(z-1\right)^2+1\ge0\)
\(\LeftrightarrowĐPCM.\)
b ) \(a^2+b^2+c^2\ge\dfrac{1}{3}\left(a+b+c\right)^2\)
\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ac\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+c^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\LeftrightarrowĐPCM.\)
a) \(x^2+4y^2+3z^2+14\ge2x+12y+6z\)
\(\Rightarrow x^2+4y^2+3z^2+14-2x-12y-6z\ge0\)
\(\Rightarrow\left(x^2-2x+1\right)+\left(4y^2-12y+9\right)+3\left(z^2-2z+1\right)+1\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(2y-3\right)^2+3\left(z-1\right)^2\ge-1\)
Xem lại đề
b)
\(a^2+b^2+c^2\ge\dfrac{1}{3}\left(a+b+c\right)^2\)
\(\Rightarrow3a^2+3b^2+3c^2\ge\left(a+b+c\right)^2\)
\(\Rightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ac\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ac\) *Đúng*
Dấu "=" xảy ra khi: \(a=b=c\)