Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Quyên
Xem chi tiết
Hquynh
19 tháng 6 2023 lúc 19:34

Bài 1 

Mình làm mẫu một số câu thôi nhé

\(9,\sqrt{5}=\left(\sqrt{5}\right)^2=5\\ \sqrt{6}=\left(\sqrt{6}\right)^2=6\)

Vì \(5< 6\)

\(\Rightarrow\sqrt{5}< \sqrt{6}\)

\(10,2\sqrt{5}=\left(2\sqrt{5}\right)^2=20\\ \sqrt{7}=\left(\sqrt{7}\right)^2=7\)

Vì \(20>7\)

\(\Rightarrow2\sqrt{5}>\sqrt{7}\)

\(11,5\sqrt{2}=\left(5\sqrt{2}\right)^2=50\\ 2\sqrt{3}=\left(2\sqrt{3}\right)^2=12\)

Vì \(50>12\Rightarrow5\sqrt{2}>2\sqrt{3}\)

\(12,2\sqrt{6}=\left(2\sqrt{6}\right)^2=24\\ 5=5^2=25\)

Vì \(25>24\Rightarrow5>2\sqrt{6}\)

\(13,\sqrt{7}=\left(\sqrt{7}\right)^2=7\\ 2=2^2=4\)

Vì \(7>4\Rightarrow\sqrt{7}>2\)

\(14,3=3^2=9\\ \sqrt{5}=\left(\sqrt{5}\right)^2=5\)

Vì \(9>5\Rightarrow3>\sqrt{5}\)

\(15,3\sqrt{6}=\left(3\sqrt{6}\right)^2=54\)

Vì \(54>1\Rightarrow3\sqrt{6}>1\)

\(16,2\sqrt{2}=\left(2\sqrt{2}\right)^2=8\\ 3=3^2=9\)

Vì \(8< 9\Rightarrow2\sqrt{2}< 3\)

Phương pháp làm dạng bài này là bình phương hai vế rồi so sánh 

Hquynh
19 tháng 6 2023 lúc 19:42

Bài 2

Gợi ý : Biểu thức dưới dấu căn \(\ge\) 0

Lưu ý : Nếu biểu thức dưới dấu căn ở dưới mẫu thì \(>0\)

\(21,ĐK:4x^2-12x+9>0\\ \Rightarrow\left(2x-3\right)^2>0\\ \Leftrightarrow x\ne\dfrac{3}{2}\)

\(22,ĐK:x^2-8x+15\ge0\\ \Rightarrow\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\)

\(23,ĐK:\left\{{}\begin{matrix}x-2\ge0\\x-5\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge2\\x\ne5\end{matrix}\right.\)

\(24,ĐK:\left\{{}\begin{matrix}\dfrac{2+x}{5-x}\ge0\\5-x\ne0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}2+x\ge0\\5-x\ge0\\x\ne5\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x\ge-2\\x\le5\\x\ne5\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x\ge-2\\x< 5\end{matrix}\right.\left(t/m\right)\)

Hoặc

\(\left\{{}\begin{matrix}2+x\le0\\5-x\le0\\5-x\ne0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x\le-2\\x\ge5\\x\ne5\end{matrix}\right.\left(loại\right)\)

Gia Huy
19 tháng 6 2023 lúc 19:44

Chỉ đăng tối đa 10 - 15 câu hỏi thôi, câu trước GV nhắc bạn rồi mà giờ bạn vẫn còn đăng nữa thì nên bị xóa câu hỏi. 

Sang Dao
Xem chi tiết
Trần Ái Linh
10 tháng 6 2021 lúc 20:43

a) Căn thức có nghĩa `<=>  14-7x >=0 <=> x <= 2`

b) Căn thức có nghĩa `<=> 4x-8>0 <=> x>2`

`(5>=0 forall x)`

c) Căn thức có nghĩa `<=>3x-1 > 0 <=> x >1/3`

`(4x^2+1>0 forall x)`

Phía sau một cô gái
10 tháng 6 2021 lúc 20:43

a) Để \(\sqrt{14-7x}\) có nghĩa là 14 -7x ≥ 0

Ta có: 14 -7x ≥ 0

                -7x ≥ -14

                   x ≤ 2

Vậy x ≤ 2

123....
Xem chi tiết
Nguyễn Hoàng Minh
15 tháng 9 2021 lúc 14:52

\(a,ĐKXĐ:\left\{{}\begin{matrix}8-4x\ge0\\5x-10\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le2\\x\ne2\end{matrix}\right.\Leftrightarrow x< 2\\ b,ĐKXĐ:\left\{{}\begin{matrix}\dfrac{-3}{x+2}\ge0\\x^2+2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+2< 0\left(-3< 0;x+2\ne0\right)\\x\in R\left(x^2+2\ge2>0\right)\end{matrix}\right.\Leftrightarrow x< -2\)

 

02 Chính Nguyễn Minh
Xem chi tiết
Gia Huy
29 tháng 6 2023 lúc 7:47

a

Để biểu thức có nghĩa thì \(x-2\ne0\Rightarrow x\ne2\)

b

Để biểu thức có nghĩa thì \(2x+1\ne0\Rightarrow x\ne-\dfrac{1}{2}\)

c

Ủa câu c là (x-1)/(x^2+1) đúng không bạn:v

Để biểu thức có nghĩa thì \(x^2+1\ne0\)

Vì \(x^2\ge0\forall x\Rightarrow x^2+1>0\forall x\)

Vậy biểu thức có nghĩa với mọi giá trị x.

d

Để biểu thức có nghĩa thì \(xy-3y\ne0\Leftrightarrow y\left(x-3\right)\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}y\ne0\\x-3\ne0\Rightarrow x\ne3\end{matrix}\right.\)

Vậy để biểu thức có nghĩa thì đồng thời \(y\ne0,x\ne3\)

HT.Phong (9A5)
29 tháng 6 2023 lúc 7:47

a) \(\dfrac{5}{x-2}\) 

Có nghĩa khi:

\(x-2\ne0\)

\(\Rightarrow x\ne2\)

b) \(\dfrac{x-y}{2x+1}\)

Có nghĩa khi:

\(2x+1\ne0\)

\(\Rightarrow2x\ne-1\)

\(\Rightarrow x\ne-\dfrac{1}{2}\)

c) \(\dfrac{x-1}{x^2+1}\)

Có nghĩa khi:

\(x^2+1\ne0\)

\(\Rightarrow x^2\ne-1\) (luôn đúng)

Vậy biểu thức được xác định với mọi x

d) \(\dfrac{ax+by+c}{xy-3y}=\dfrac{ax+by+c}{y\left(x-3\right)}\)

Có nghĩa khi:

\(y\left(x-3\right)\ne0\)

\(\Leftrightarrow\left[{}\begin{matrix}y\ne0\\x-3\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}y\ne0\\x\ne3\end{matrix}\right.\)

Hue Trieu
Xem chi tiết
chuche
Xem chi tiết
Nguyễn Hoàng Minh
2 tháng 11 2021 lúc 7:28

Bài 5:

\(x^3=18+3\sqrt[3]{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\\ \Leftrightarrow x^3=18+3x\sqrt[3]{1}\\ \Leftrightarrow x^3-3x=18\\ y^3=6+3\sqrt[3]{\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\\ \Leftrightarrow y^3=6+3y\sqrt[3]{1}\\ \Leftrightarrow y^3-3y=6\\ P=x^3+y^3-3\left(x+y\right)+1993\\ P=\left(x^3-3x\right)+\left(y^3-3y\right)+1993\\ P=18+6+1993=2017\)

Hào Lê
2 tháng 11 2021 lúc 7:41

x3=18+33√(9+4√5)(9−4√5)(3√9+4√5+3√9−4√5)⇔x3=18+3x3√1⇔x3−3x=18y3=6+33√(3−2√2)(3+2√2)(3√3+2√2+3√3−2√2)⇔y3=6+3y3√1⇔y3−3y=6P=x3+y3−3(x+y)+1993P=(x3−3x)+(y3−3y)+1993P=18+6+1993=2017

Trần Anh Tuấn
Xem chi tiết
Nguyễn Khánh Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 8 2021 lúc 15:06

Bài 1: 

Ta có: \(D=\sqrt{16x^4}-2x^2+1\)

\(=4x^2-2x^2+1\)

\(=2x^2+1\)

Việt Hoàng
Xem chi tiết
Nguyễn Ngọc Huy Toàn
10 tháng 5 2022 lúc 19:52

\(\dfrac{x-\sqrt{x}}{\sqrt{x}-1}-\dfrac{x-1}{\sqrt{x}+1}\);\(ĐK:x\ge0;x\ne1\)

\(\Leftrightarrow\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(\Leftrightarrow\sqrt{x}-\left(\sqrt{x}-1\right)\)

\(\Leftrightarrow\sqrt{x}-\sqrt{x}+1\)

\(\Leftrightarrow1\)

Nguyễn Lê Phước Thịnh
10 tháng 5 2022 lúc 19:53

a: \(=\sqrt{x}\cdot\dfrac{\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(=\sqrt{x}-\sqrt{x}+1=1\)

helpmeplsss
Xem chi tiết
2611
15 tháng 9 2023 lúc 21:01

`e)` Biểu thức xác định `<=>[-5]/[x^2+6] >= 0`

                           `=>x^2+6 <= 0` 

         Mà `x^2+6 > 0`

   `=>` Không có giá trị của `x` thỏa mãn.

`f)` Biểu thức xác định `<=>2/[x^2] >= 0`

                `=>x^2 > 0<=>x ne 0`

`g)` Biểu thức xác định `<=>1/[-1+x] >= 0`

                  `=>-1+x > 0<=>x > 1`

`h)` Biểu thức xác định `<=>4/[x+3] >= 0`

             `=>x+3 > 0<=>x > -3`

Minh Hiếu
15 tháng 9 2023 lúc 21:03

e) \(\sqrt{\dfrac{-5}{x^2+6}}\left(\text{k tồn tại x để biểu thức có ngĩa}\right)\left(\dfrac{-5}{x^2+6}< 0\forall x\right)\)

f) \(x\ne0\)

g) \(x>1\)

h) \(x>-3\)