Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Song Phương
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 2 2023 lúc 17:36

a.

\(\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)=3sinx+cosx+2\)

\(\Leftrightarrow sin2x+cos2x=3sinx+cosx+2\)

\(\Leftrightarrow2sinx.cosx-3sinx+2cos^2x-cosx-3=0\)

\(\Leftrightarrow sinx\left(2cosx-3\right)+\left(cosx+1\right)\left(2cosx-3\right)=0\)

\(\Leftrightarrow\left(2cosx-3\right)\left(sinx+cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\dfrac{3}{2}\left(vn\right)\\sinx+cosx+1=0\end{matrix}\right.\)

\(\Rightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=-1\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
26 tháng 2 2023 lúc 17:40

b.

ĐKXĐ: \(cosx\ne\dfrac{1}{2}\Rightarrow\left[{}\begin{matrix}x\ne\dfrac{\pi}{3}+k2\pi\\x\ne-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\dfrac{\left(2-\sqrt{3}\right)cosx-2sin^2\left(\dfrac{x}{2}-\dfrac{\pi}{4}\right)}{2cosx-1}=1\)

\(\Rightarrow\left(2-\sqrt{3}\right)cosx+cos\left(x-\dfrac{\pi}{2}\right)=2cosx\)

\(\Leftrightarrow-\sqrt{3}cosx+sinx=0\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=0\)

\(\Rightarrow x-\dfrac{\pi}{3}=k\pi\)

\(\Rightarrow x=\dfrac{\pi}{3}+k\pi\)

Kết hợp ĐKXĐ \(\Rightarrow x=\dfrac{4\pi}{3}+k2\pi\)

Nguyễn Việt Lâm
26 tháng 2 2023 lúc 17:42

c.

\(2\sqrt{2}cos\left(\dfrac{5\pi}{12}-x\right)sinx=1\)

\(\Leftrightarrow\sqrt{2}\left(sin\left(\dfrac{5\pi}{12}\right)+sin\left(2x-\dfrac{5\pi}{12}\right)\right)=1\)

\(\Leftrightarrow sin\left(2x-\dfrac{5\pi}{12}\right)=\dfrac{-\sqrt{6}+\sqrt{2}}{2}\)

\(\Leftrightarrow sin\left(2x-\dfrac{5\pi}{12}\right)=sin\left(-\dfrac{\pi}{12}\right)\)

\(\Leftrightarrow...\)

Dương Nguyễn
Xem chi tiết
Khôi Bùi
16 tháng 7 2021 lúc 21:21

\(\sqrt{3}cosx+2sin^2\left(\dfrac{x}{2}-\pi\right)=1\) 

\(\Leftrightarrow\sqrt{3}cosx+2sin^2\dfrac{x}{2}=1\)

\(\Leftrightarrow\sqrt{3}cosx-cosx=0\Leftrightarrow cosx=0\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\) ( k thuộc Z )

Vậy ... 

Nguyễn Việt Lâm
16 tháng 7 2021 lúc 21:28

22.

Nhận thấy \(cosx=0\) không phải nghiệm, chia 2 vế cho \(cos^2x\)

\(3tan^2x+2tanx-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=\dfrac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=arctan\left(\dfrac{1}{3}\right)+k\pi\end{matrix}\right.\)

Nghiệm dương nhỏ nhất của pt là: \(x=arctan\left(\dfrac{1}{3}\right)\)

Ngô Thành Chung
16 tháng 7 2021 lúc 21:33

22. PT đã cho tương đương

3 - 4cos2x + 2 sinxcosx = 0

⇔ 3 - 2 - 2cos2x + sin2x = 0

⇔ 1 - 2cos2x + sin2x = 0

⇔ 1 + sin2x = 2cos2x

⇔ sin\(\dfrac{\pi}{2}\) + sin2x = 2cos2x

⇔ \(2sin\left(\dfrac{\pi}{4}+x\right).cos\left(\dfrac{\pi}{4}-x\right)\) = 2cos2x

Do \(\left(\dfrac{\pi}{4}-x\right)+\left(\dfrac{\pi}{4}+x\right)=\dfrac{\pi}{2}\) 

⇒ \(sin\left(\dfrac{\pi}{4}+x\right)=cos\left(\dfrac{\pi}{4}-x\right)\)

Vậy sin2\(\left(x+\dfrac{\pi}{4}\right)\) = cos2x

Cái này là hiển nhiên ????

 

 

 

 

Quỳnh Anh
Xem chi tiết
Lê Thị Tuyết Nhung
Xem chi tiết
Lê Thị Tuyết Nhung
1 tháng 11 2017 lúc 19:28

.

Sonyeondan Bangtan
Xem chi tiết
Nguyễn Ngọc Lộc
23 tháng 6 2021 lúc 21:58

a, Ta có : \(\sin\left(3x+60\right)=\dfrac{1}{2}\)

\(\Rightarrow3x+60=30+2k180\)

\(\Rightarrow3x=2k180-30\)

\(\Leftrightarrow x=120k-10\)

Vậy ...

b, Ta có : \(\cos\left(2x-\dfrac{\pi}{3}\right)=-\dfrac{\sqrt{2}}{2}\)

\(\Rightarrow2x-\dfrac{\pi}{3}=\dfrac{3}{4}\pi+k2\pi\)

\(\Leftrightarrow x=\dfrac{13}{24}\pi+k\pi\)

Vậy ...

c, Ta có : \(tan\left(x+\dfrac{\pi}{6}\right)=\sqrt{3}\)

\(\Rightarrow x+\dfrac{\pi}{6}=\dfrac{\pi}{3}+k\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{6}+k\pi\)

Vậy ...

d, Ta có : \(\cot\left(2x+\pi\right)=-1\)

\(\Rightarrow2x+\pi=\dfrac{3}{4}\pi+k\pi\)

\(\Leftrightarrow x=-\dfrac{1}{8}\pi+\dfrac{k}{2}\pi\)

Vậy ...

 

Lê Thị Thục Hiền
23 tháng 6 2021 lúc 21:58

a) \(sin\left(3x+60^0\right)=\dfrac{1}{2}\)

\(\Leftrightarrow sin\left(3x+\dfrac{\pi}{3}\right)=sin\dfrac{\pi}{6}\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+\dfrac{\pi}{3}=\dfrac{\pi}{6}+k2\pi\\3x+\dfrac{\pi}{3}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)(\(k\in Z\))\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\pi}{18}+\dfrac{k2\pi}{3}\\x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\end{matrix}\right.\)(\(k\in Z\))

Vậy...

b) Pt\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=cos\dfrac{3\pi}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=\dfrac{3\pi}{4}+k2\pi\\2x-\dfrac{\pi}{3}=-\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)(\(k\in Z\))\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{13\pi}{24}+k\pi\\x=-\dfrac{5\pi}{24}+k\pi\end{matrix}\right.\)(\(k\in Z\))

Vậy...

c) Pt \(\Leftrightarrow tan\left(x+\dfrac{\pi}{6}\right)=tan\dfrac{\pi}{3}\)

\(\Leftrightarrow x+\dfrac{\pi}{6}=\dfrac{\pi}{3}+k\pi,k\in Z\)\(\Leftrightarrow x=\dfrac{\pi}{6}+k\pi,k\in Z\)

Vậy...

d) Pt \(\Leftrightarrow tan\left(2x+\pi\right)=-1\)

\(\Leftrightarrow2x+\pi=-\dfrac{\pi}{4}+k\pi,k\in Z\)

\(\Leftrightarrow x=-\dfrac{5\pi}{8}+\dfrac{k\pi}{2},k\in Z\)

Vậy...

Phelan Egan
Xem chi tiết
Adonis Baldric
14 tháng 8 2017 lúc 16:42

a, \(sin\dfrac{x}{2}\cdot sinx-cos\dfrac{x}{2}\cdot sin^2x+1-2cos^2\cdot\left(\dfrac{\pi}{4}-\dfrac{x}{2}\right)=0\)

\(\Leftrightarrow sin\dfrac{x}{2}\cdot sinx-cos\dfrac{x}{2}\cdot sin^2x+1-2\cdot\left[1+cos2\cdot\left(\dfrac{\pi}{4}-\dfrac{x}{2}\right)\right]=0\)

\(\Leftrightarrow sin\dfrac{x}{2}\cdot sinx-cos\dfrac{x}{2}\cdot sin^2x+1-1-cos\left(\dfrac{\pi}{2}-x\right)=0\)

\(\Leftrightarrow sin\dfrac{s}{2}\cdot sinx-cos\dfrac{x}{2}\cdot sin^2x-sinx=0\)

\(\Leftrightarrow sinx\cdot\left(sin\dfrac{x}{2}-sinx\cdot cos\dfrac{x}{2}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\text{ (1) }\\sin\dfrac{x}{2}-sinx\cdot cos\dfrac{x}{2}-1=0\text{ (2) }\end{matrix}\right.\)

(1) : \(sinx=0\Leftrightarrow x=k\pi\left(k\in Z\right)\)

(2) : \(sin\dfrac{x}{2}-sinx\cdot cos\dfrac{x}{2}-1=0\)

\(\Leftrightarrow sin\dfrac{x}{2}-cos\dfrac{x}{2}\cdot2sin\dfrac{x}{2}\cdot cos\dfrac{x}{2}-1=0\)

\(\Leftrightarrow sin\dfrac{x}{2}-2sin\dfrac{x}{2}\cdot cos^2\dfrac{x}{2}-1=0\)

\(\Leftrightarrow sin\dfrac{x}{2}-2sin\dfrac{x}{2}\cdot\left(1-sin^2\dfrac{x}{2}\right)-1=0\)

\(\Leftrightarrow sin\dfrac{x}{2}-2sin\dfrac{x}{2}+2sin^3\dfrac{x}{2}-1=0\)

\(\Leftrightarrow2sin^3\dfrac{x}{2}-sin\dfrac{x}{2}-1=0\)

\(\Leftrightarrow sin\dfrac{x}{2}=1\Leftrightarrow\dfrac{x}{2}=\dfrac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\pi+k4\pi\left(k\in Z\right)\)

Adonis Baldric
14 tháng 8 2017 lúc 17:03

b, \(tanx-3cotx=4\cdot\left(sinx+\sqrt{3}\cdot cosx\right)\)

\(\Leftrightarrow\dfrac{sinx}{cosx}-\dfrac{3cos}{sinx}=4\cdot\left(sinx+\sqrt{3}\cdot cosx\right)\)

\(\Leftrightarrow\dfrac{sin^2x-3cos^2x}{sinx-cosx}=4\cdot\left(sinx+\sqrt{3}\cdot cosx\right)\)

\(\Leftrightarrow sin^2x-3cos^2x=4\cdot\left(sinx+\sqrt{3}\cdot cosx\right)\cdot sinx\cdot cosx\)

\(\Leftrightarrow\left(sinx-\sqrt{3}\cdot cosx\right)\cdot\left(sinx+\sqrt{3}\cdot cosx\right)=4\left(sinx+\sqrt{3}\cdot cosx\right)\cdot sinx\cdot cosx\)

\(\Leftrightarrow\left(sinx+\sqrt{3}\cdot cosx\right)\cdot\left[\left(sinx-\sqrt{3}\cdot cosx\right)-4sinx\cdot cosx\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+\sqrt{3}\cdot cosx=0\text{ (1) }\\sinx-\sqrt{3}\cdot cosx-4sinx\cdot cosx=0\text{ (2) }\end{matrix}\right.\)

(1) : \(sinx+\sqrt{3}\cdot cosx=0\)

\(\Leftrightarrow\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx=0\)

\(\Leftrightarrow cos\dfrac{\pi}{3}\cdot sinx+sin\dfrac{\pi}{3}\cdot cosx=0\)

\(\Leftrightarrow sin\cdot\left(x+\dfrac{\pi}{3}\right)=0\)

\(\Leftrightarrow x+\dfrac{\pi}{3}=k\pi\Leftrightarrow x=\dfrac{-\pi}{3}+k\pi\left(k\in Z\right)\)

(2) : \(sinx-\sqrt{3}cosx-4sinx\cdot cosx=0\)

\(\Leftrightarrow sinx-\sqrt{3}cos=2sin2x\)

\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cos2=sin2x\)

\(\Leftrightarrow cos\dfrac{\pi}{3}-sinx-sin\dfrac{\pi}{3}\cdot cosx=sin2x\)

\(\Leftrightarrow sin\cdot\left(x-\dfrac{\pi}{3}\right)=sin2x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=2x+k2\pi\\x-\dfrac{\pi}{3}=\pi-2x+k2\pi\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\pi}{3}+k2\pi\\x=\dfrac{4\pi}{9}+\dfrac{k2\pi}{3}\left(k\in Z\right)\end{matrix}\right.\)

Chú bé rồng online
Xem chi tiết
Adonis Baldric
5 tháng 8 2017 lúc 12:24

\(cos\cdot\left(3x-\dfrac{\pi}{6}\right)=sin\cdot\left(x+\dfrac{\pi}{4}\right)\)

\(\Leftrightarrow cos\cdot\left(3x-\dfrac{\pi}{6}\right)=cos\cdot\left(\dfrac{\pi}{2}-x-\dfrac{\pi}{4}\right)\)

\(\Leftrightarrow cos\cdot\left(3x-\dfrac{\pi}{6}\right)=cos\cdot\left(\dfrac{\pi}{4}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-\dfrac{\pi}{6}=\dfrac{\pi}{4}-x+k2\pi\\3x-\dfrac{\pi}{6}=\dfrac{-\pi}{4}+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=\dfrac{5\pi}{12}+k2\pi\\2x=\dfrac{-\pi}{12}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5\pi}{48}+\dfrac{k\pi}{2}\\x=\dfrac{-\pi}{24}+k\pi\end{matrix}\right.\left(k\in Z\right)\)

Nguyễn Hải Vân
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 3 2021 lúc 22:23

a.

\(y'=\dfrac{3}{cos^2\left(3x-\dfrac{\pi}{4}\right)}-\dfrac{2}{sin^2\left(2x-\dfrac{\pi}{3}\right)}-sin\left(x+\dfrac{\pi}{6}\right)\)

b.

\(y'=\dfrac{\dfrac{\left(2x+1\right)cosx}{2\sqrt{sinx+2}}-2\sqrt{sinx+2}}{\left(2x+1\right)^2}=\dfrac{\left(2x+1\right)cosx-4\left(sinx+2\right)}{\left(2x+1\right)^2}\)

c.

\(y'=-3sin\left(3x+\dfrac{\pi}{3}\right)-2cos\left(2x+\dfrac{\pi}{6}\right)-\dfrac{1}{sin^2\left(x+\dfrac{\pi}{4}\right)}\)

Phạm Nhật Trúc
Xem chi tiết
Ngô Thành Chung
26 tháng 8 2021 lúc 23:09

1, \(sin\left(x+\dfrac{\pi}{6}\right)+cos\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{6}}{2}\)

⇔  \(\dfrac{\sqrt{2}}{2}sin\left(x+\dfrac{\pi}{6}\right)+\dfrac{\sqrt{2}}{2}cos\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}\)

⇔ \(sin\left(x+\dfrac{\pi}{6}+\dfrac{\pi}{4}\right)=sin\dfrac{\pi}{4}\)

2, \(\left(\sqrt{3}-1\right)sinx+\left(\sqrt{3}+1\right)cosx=1-\sqrt{3}\)

⇔ \(\dfrac{\left(\sqrt{3}-1\right)}{2\sqrt{2}}sinx+\dfrac{\left(\sqrt{3}+1\right)}{2\sqrt{2}}cosx=\dfrac{1-\sqrt{3}}{2\sqrt{2}}\)

⇔ sinx . si

Tâm Cao
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 1 2021 lúc 15:57

\(2sinx+2\sqrt{3}cosx-\sqrt{3}sin2x+cos2x=\sqrt{3}cosx+cos2x-2sinx+2\)

\(\Leftrightarrow4sinx+\sqrt{3}cosx-2\sqrt{3}sinx.cosx-2=0\)

\(\Leftrightarrow-2sinx\left(\sqrt{3}cosx-2\right)+\sqrt{3}cosx-2=0\)

\(\Leftrightarrow\left(1-2sinx\right)\left(\sqrt{3}cosx-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\cosx=\dfrac{2}{\sqrt{3}}>1\end{matrix}\right.\)

\(\Leftrightarrow...\)