Tìm số hữu tỉ
a,\(\dfrac{x}{2}\)-\(\dfrac{1}{x}\)=\(\dfrac{1}{12}\)
tìm số hữu tỷ x
\(\dfrac{x}{2}-\dfrac{1}{x}=\dfrac{1}{12}\)
\(\dfrac{x}{2}-\dfrac{1}{x}=\dfrac{1}{12}\) (ĐK: \(x\ne0\))
\(\Rightarrow\dfrac{x^2}{2x}-\dfrac{2}{2x}=\dfrac{1}{12}\)
\(\Rightarrow\dfrac{x^2-2}{2x}=\dfrac{1}{12}\)
\(\Rightarrow12\left(x^2-2\right)=2x\)
\(\Rightarrow12x^2-24=2x\)
\(\Rightarrow12x^2-2x-24=0\)
\(\Rightarrow2\left(6x^2-x-12\right)=0\)
\(\Rightarrow2\left(6x^2+8x-9x-12\right)=0\)
\(\Rightarrow2\left[2x\left(3x+4\right)-3\left(3x+4\right)\right]=0\)
\(\Rightarrow2\left(3x+4\right)\left(2x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x=-4\\2x=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\left(tm\right)\\x=\dfrac{3}{2}\left(tm\right)\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{4}{3};\dfrac{3}{2}\right\}\)
\(\dfrac{x}{2}-\dfrac{1}{x}=\dfrac{1}{12}\)
\(\Rightarrow\dfrac{x^2}{2x}-\dfrac{2}{2x}=\dfrac{1}{12}\)
\(\Rightarrow\dfrac{x^2-2}{2x}=\dfrac{1}{12}\)
\(\Rightarrow12\left(x^2-2\right)=2x\)
\(\Rightarrow12x^2-2x-24=0\)
\(\Rightarrow12x^2-18x+16x-24=0\)
\(\Rightarrow6x\left(2x-3\right)+8\left(2x-3\right)=0\)
\(\Rightarrow\left(2x-3\right)\left(6x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\6x+8=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{4}{3}\end{matrix}\right.\)
`x/2-1/x=1/12`
\(\Rightarrow\dfrac{x.6x}{12x}-\dfrac{12}{12x}=\dfrac{x}{12x}\\ \Rightarrow\dfrac{6x^2-12-x}{12x}=0\\ \Rightarrow\dfrac{6x^2-12+8x-9x}{12x}=0\\ \Rightarrow\dfrac{\left(6x^2+8x\right)-\left(9x+12\right)}{12x}=0\\ \Rightarrow\dfrac{2x\left(3x+4\right)-3\left(3x+4\right)}{12x}=0\\ \Rightarrow\left(3x+4\right)\left(2x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x+4=0\\2x-3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}3x=-4\\2x=3\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=\dfrac{3}{2}\end{matrix}\right.\)
Cậu đã học dạng này chưa nhỉ?
tìm số hữu tỷ x biết:
\(\dfrac{x}{2}-\dfrac{1}{x}=\dfrac{1}{12}\)
Điều kiện: \(x\ne0\)
\(\dfrac{x}{2}-\dfrac{1}{x}=\dfrac{1}{12}\\ \Leftrightarrow6x^2-12-x=0\\ \Leftrightarrow6x^2-9x+8x-12=0\\ \Leftrightarrow3x\left(2x-3\right)+4\left(2x-3\right)=0\\ \Leftrightarrow\left(3x+4\right)\left(2x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=\dfrac{3}{2}\end{matrix}\right.\left(tm\right)}\)
1 tìm các số hữu tỉ x,y thỏa mãn 3x=2y và x+y=-15
2 tìm các số hữu tỉ x,y biết rằng
a) x+y-z=20 và \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
b)\(\dfrac{x}{11}=\dfrac{y}{12};\dfrac{y}{3}=\dfrac{z}{7}\) và 2x-y+z=152
3) chia số 552 thành ba phần tỉ lệ nghịch 3;4;5 tính giá trị từng phần?
chia số 315 thành 3 phần tỉ lệ nghịch với 3:4:6. tính giá trị mỗi phần?
4 cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) chứng minh rằng
a)\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
b)\(\dfrac{5a+2c}{5a+2d}=\dfrac{a-4c}{b-4d}\)
c\(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Các bạn giúp mình với nhé mình dang cần gấp.mình xin cảm ơn
Bài 1:
Ta có: \(3x=2y\)
nên \(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=-15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)
Vậy: (x,y)=(-6;-9)
Bài 2:
a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y-z=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)
Vậy: (x,y,z)=(40;30;50)
Bài 2:
b) Ta có: \(\dfrac{y}{3}=\dfrac{z}{7}\)
nên \(\dfrac{y}{12}=\dfrac{z}{28}\)
mà \(\dfrac{x}{11}=\dfrac{y}{12}\)
nên \(\dfrac{x}{11}=\dfrac{y}{12}=\dfrac{z}{28}\)
hay \(\dfrac{2x}{22}=\dfrac{y}{12}=\dfrac{z}{28}\)
mà 2x-y+z=152
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{22}=\dfrac{y}{12}=\dfrac{z}{28}=\dfrac{2x-y+z}{22-12+28}=\dfrac{152}{38}=4\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{11}=4\\\dfrac{y}{12}=4\\\dfrac{z}{28}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=44\\y=48\\z=112\end{matrix}\right.\)
Vậy: (x,y,z)=(44;48;112)
Tìm số hữu tỉ x, biết rằng:
a. \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)
b. \(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)
\(\Rightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)
\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)
\(\Rightarrow x+1=0\Rightarrow x=-1\)
\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
\(\Rightarrow\dfrac{x+4}{2000}+1+\dfrac{x+3}{2001}+1=\dfrac{x+2}{2002}+1+\dfrac{x+1}{2003}+1\)
\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}=\dfrac{x+2004}{2002}+\dfrac{x+2004}{2003}\)
\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)
\(\Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
\(\Rightarrow x+2004=0\Rightarrow x=-2004\)
a, \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)
\(\Rightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)
\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)
Do \(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\)
\(\Rightarrow x+1=0\Rightarrow x=-1\)
Vậy x = -1
b, \(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)
\(\Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
Vì \(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\)
\(\Rightarrow x+2004=0\Rightarrow x=-2004\)
Vậy...
a. \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)
\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)
Ta thấy: \(\dfrac{1}{10}>\dfrac{1}{11}>\dfrac{1}{12}>\dfrac{1}{13}>\dfrac{1}{14}\) nên biểu thức trong dấu ngoặc thứ hai khác 0. Do đó x + 1 = 0 => x = -1
b. \(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
\(\left(\dfrac{x+4}{2000}+1\right)+\left(\dfrac{x+3}{2001}+1\right)=\left(\dfrac{x+2}{2002}+1\right)+\left(\dfrac{x+1}{2003}+1\right)\)
\(\Leftrightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}=\dfrac{x+2004}{2002}+\dfrac{x+2004}{2003}\)
\(\Leftrightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
\(\Rightarrow x+2004=0\)
=> x = -2004
Tìm số hữu tỉ x thỏa mãn: \(\dfrac{x+4}{20}+\dfrac{x+3}{21}=\dfrac{x+2}{22}+\dfrac{x+1}{21}\)
Tìm các số hữu tỉ x, biết :
a)\(\dfrac{-5}{x-3}\)<0
b)\(\dfrac{3-x}{x^2+1}\)≥0
c)\(\dfrac{\left(x-1\right)^2}{x-2}\)<0
\(a,\dfrac{-5}{x-3}< 0\Leftrightarrow x-3>0\left(-5< 0\right)\Leftrightarrow x>3\\ b,\dfrac{3-x}{x^2+1}\ge0\Leftrightarrow3-x\ge0\left(x^2+1>0\right)\Leftrightarrow x\le3\\ c,\dfrac{\left(x-1\right)^2}{x-2}< 0\Leftrightarrow x-2< 0\left[\left(x-1\right)^2\ge0\right]\Leftrightarrow x< 2\)
1.vì sao các số 0,6 ; -1,25 ; \(1\dfrac{1}{3}\)là các số hữu tỉ ?
2. Tìm \(x\) : \(-\dfrac{3}{7}+x=\dfrac{1}{3}\)
a.Vì các số đó đều viết đc dưới dạng PS nên đó là SHT
b.=1/3+3/7=16/21
1. Vì : \(0.6=\dfrac{6}{10}=\dfrac{18}{30}=\dfrac{24}{40}=...\\ -1,25=\dfrac{-1}{25}=\dfrac{-2}{50}=\dfrac{-12}{150}=...\\ 1\dfrac{1}{3}=\dfrac{4}{3}=\dfrac{8}{6}=\dfrac{32}{24}=...\)
1. \(0,6=\dfrac{3}{5}\) nên 0,6 là số hữu tỷ
\(-1,25=-\dfrac{5}{4}\) nên -1,25 là số hữu tỷ
\(1\dfrac{1}{3}=\dfrac{4}{3}\) nên \(1\dfrac{1}{3}\)là số hữu tỷ
2. \(-\dfrac{3}{7}+x=\dfrac{1}{3}\)
\(x=\dfrac{1}{3}+\dfrac{3}{7}\)
\(x=\dfrac{16}{21}\)
Vậy \(x=\dfrac{16}{21}\)
Tìm các số hữu tỉ
a) Có mẫu là 15, lớn hơn \(\dfrac{-7}{10}\) và nhỏ hơn \(\dfrac{-9}{20}\)
Gọi tập hợp các tử số của số hữu tỉ đó là x
\(\Rightarrow\dfrac{-7}{10}< \dfrac{x}{15}< \dfrac{-9}{20}\Leftrightarrow\dfrac{-42}{60}< \dfrac{4x}{60}< \dfrac{-27}{60}\Leftrightarrow-42< 4x< -27\)
\(\Leftrightarrow x\in\left\{-10;-9;-8;-7;-6\right\}\)
Vậy các số hữu tỉ cần tìm là: \(S=\left\{-\dfrac{10}{15};-\dfrac{9}{15};-\dfrac{8}{15};-\dfrac{7}{15};-\dfrac{6}{15}\right\}\)
Gọi các số hữu tỉ cần tìm có dạng là: \(\dfrac{x}{15}\)
Theo đề, ta có: \(\dfrac{-7}{10}< \dfrac{x}{15}< -\dfrac{9}{20}\)
\(\Leftrightarrow\dfrac{-42}{60}< \dfrac{4x}{60}< \dfrac{-27}{60}\)
\(\Leftrightarrow4x\in\left\{-40;-36;-32;-28\right\}\)
hay \(x\in\left\{-10;-9;-8;-7\right\}\)
tìm số tự nhin x bt
a.\(x-\)\(\dfrac{5}{14}=\dfrac{3}{7}-\dfrac{1}{14}\) b.\(\dfrac{2}{9}:x=\dfrac{1}{2}+\dfrac{2}{3}\) c.\(\dfrac{6}{32:x}=\dfrac{12}{16}\)
a: =>x-5/14=6/14-1/14=5/14
=>x=10/14=5/7
b; =>2/9:x=3/6+4/6=7/6
=>x=2/9:7/6=2/9*6/7=4/21
c: =>32:x=8
=>x=4
a
\(x-\dfrac{5}{14}=\dfrac{3}{7}-\dfrac{1}{14}\\ x-\dfrac{5}{14}-\dfrac{3}{7}+\dfrac{1}{14}=0\\ x+\dfrac{1}{14}-\dfrac{5}{14}-\dfrac{6}{14}=0\\ x+\dfrac{1-5-6}{14}=0\\ x-\dfrac{5}{7}=0\\ x=0+\dfrac{5}{7}\\ x=\dfrac{5}{7}\)
b
\(\dfrac{2}{9}:x=\dfrac{1}{2}+\dfrac{2}{3}\\ \dfrac{2}{9}:x=\dfrac{3}{6}+\dfrac{4}{6}\\ \dfrac{2}{9}:x=\dfrac{3+4}{6}=\dfrac{7}{6}\\ x=\dfrac{2}{9}:\dfrac{7}{6}\\ x=\dfrac{2}{9}\times\dfrac{6}{7}=\dfrac{2.3.2}{3.3.7}=\dfrac{4}{21}\)
c
\(\dfrac{6}{32:x}=\dfrac{12}{16}\\ 32:x=6:\dfrac{12}{16}\\ 32:x=6\times\dfrac{16}{12}\\ 32:x=\dfrac{3\times2\times4\times4}{3\times4}\\ 32:x=8\\ x=\dfrac{32}{8}\\ x=4\)
`@` `\text {Answer}`
`\downarrow`
`a,`
`x - 5/14 = 3/7 - 1/14`
`x - 5/14 = 5/14`
`=> x = 5/14 + 5/14`
`=> x = 5/7`
Vậy, `x = 5/7`
`b,`
`2/9 \div x = 1/2 + 2/3`
`2/9 \div x = 7/6`
`x = 2/9 \div 7/6`
`x = 4/21`
Vậy, `x = 4/21`
`c,`
\(\dfrac{6}{32\div x}=\dfrac{12}{16}\)
`6/(32 \div x) = 3/4`
`32 \div x = 6 \div 3/4`
`32 \div x = 8`
` x = 32 \div 8`
`x = 4`
Vậy, `x = 4`
Tìm số nguyên x, biết
a) \(-\dfrac{x}{2}+\dfrac{2x}{3}+\dfrac{x+1}{4}+\dfrac{2x+1}{6}=\dfrac{8}{3}\)
b) \(\dfrac{3}{2x+1}+\dfrac{10}{4x+2}-\dfrac{6}{6x+3}=\dfrac{12}{26}\)
\(a,-\dfrac{x}{2}+\dfrac{2x}{3}+\dfrac{x+1}{4}+\dfrac{2x+1}{6}=\dfrac{8}{3}\)
\(\Rightarrow-\dfrac{6x}{12}+\dfrac{8x}{12}+\dfrac{3\left(x+1\right)}{12}+\dfrac{2\left(2x+1\right)}{12}=\dfrac{8}{3}\)
\(\Rightarrow\dfrac{-6x+8x+3x+3+4x+2}{12}=\dfrac{8}{3}\)
\(\Rightarrow\dfrac{9x+5}{12}=\dfrac{8}{3}\)
\(\Rightarrow27x+15=96\)
\(\Rightarrow27x=81\)
\(\Rightarrow x=3\left(tm\right)\)
\(b,\dfrac{3}{2x+1}+\dfrac{10}{4x+2}-\dfrac{6}{6x+3}=\dfrac{12}{26}\)
\(\Rightarrow\dfrac{3}{2x+1}+\dfrac{10}{2\left(2x+1\right)}-\dfrac{6}{3\left(2x+1\right)}=\dfrac{6}{13}\)
\(\Rightarrow\dfrac{3}{2x+1}+\dfrac{5}{2x+1}-\dfrac{2}{2x+1}=\dfrac{6}{13}\)
\(\Rightarrow\dfrac{3+5-2}{2x+1}=\dfrac{6}{13}\)
\(\Rightarrow\dfrac{6}{2x+1}=\dfrac{6}{13}\)
\(\Rightarrow2x+1=13\)
\(\Rightarrow2x=12\)
\(\Rightarrow x=6\left(tm\right)\)
#Toru
a) \(-\dfrac{x}{2}+\dfrac{2x}{3}+\dfrac{x+1}{4}+\dfrac{2x+2}{6}=\dfrac{8}{3}\)
\(\Rightarrow\dfrac{-6x}{12}+\dfrac{8x}{12}+\dfrac{3\left(x+1\right)}{12}+\dfrac{2\left(2x+1\right)}{12}=\dfrac{4\cdot8}{12}\)
\(\Rightarrow-6x+8x+3x+3+4x+2=32\)
\(\Rightarrow9x+5=32\)
\(\Rightarrow9x=32-5\)
\(\Rightarrow9x=27\)
\(\Rightarrow x=\dfrac{27}{9}\)
\(\Rightarrow x=3\)
b) \(\dfrac{3}{2x+1}+\dfrac{10}{4x+2}-\dfrac{6}{6x+3}=\dfrac{12}{26}\) (ĐK: \(x\ne-\dfrac{1}{2}\))
\(\Rightarrow\dfrac{3}{2x+1}+\dfrac{10}{2\left(2x+1\right)}-\dfrac{6}{3\left(2x+1\right)}=\dfrac{6}{13}\)
\(\Rightarrow\dfrac{3}{2x+1}+\dfrac{5}{2x+1}-\dfrac{2}{2x+1}=\dfrac{6}{13}\)
\(\Rightarrow\dfrac{6}{2x+1}=\dfrac{6}{13}\)
\(\Rightarrow2x+1=13\)
\(\Rightarrow2x=12\)
\(\Rightarrow x=\dfrac{12}{2}\)
\(\Rightarrow x=6\left(tm\right)\)