Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoang Tran
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 8 2021 lúc 21:11

\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}=\dfrac{\sqrt{ab+2c^2}}{\sqrt{a^2+b^2+ab}}=\dfrac{ab+2c^2}{\sqrt{\left(a^2+b^2+ab\right)\left(ab+2c^2\right)}}\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\)

\(\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+a^2+b^2+2c^2}=\dfrac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)

Tương tự và cộng lại:

\(VT\ge ab+bc+ca+2\left(a^2+b^2+c^2\right)=2+ab+bc+ca\)

Vũ Đình Thái
Xem chi tiết
Trần Minh Hoàng
20 tháng 12 2020 lúc 18:43

\(VT=\sqrt{\left(a+b\right)\left(a+c\right)}+\sqrt{\left(b+c\right)\left(b+a\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}\le_{AM-GM}\dfrac{a+b+a+c}{2}+\dfrac{b+c+b+a}{2}+\dfrac{c+a+c+b}{2}=2\left(a+b+c\right)=VP\) (đpcm)

Huy Hoang
23 tháng 1 2021 lúc 20:38

Đầy đủ hơn 1 tí nhé

Theo gt : ab + bc + ca = 1 nên a2 + 1 = a2 + ab + bc + ca

                                                            = ( a + b )( a + c )

- Áp dụng bđt Cauchy ta có :

\(\sqrt{a^2+1}=\sqrt{\left(a+b\right)\left(a+c\right)}\le\frac{\left(a+b\right)\left(a+c\right)}{2}\)

- Tương tư ta cũng có : 

\(\sqrt{b^2+1}\le\frac{\left(b+a\right)+\left(b+c\right)}{2}\)và \(\sqrt{c^2+1}\le\frac{\left(c+a\right)+\left(c+b\right)}{2}\)

Từ đó suy ra : VT \(\le\frac{\left(a+b\right)+\left(a+c\right)+\left(b+a\right)+\left(b+c\right)+\left(c+a\right)+\left(c+b\right)}{2}\)

                                   \(\le2\left(a+b+c\right)=VP\left(đpcm\right)\)

Khách vãng lai đã xóa
Itachi Uchiha
Xem chi tiết
Thắng Nguyễn
19 tháng 5 2017 lúc 14:45

ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho

FL.Hermit
9 tháng 8 2020 lúc 9:26

gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

=> Thay vào thì     \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)

\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)

Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào

=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)

=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)

=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\) 

Khách vãng lai đã xóa
FL.Hermit
9 tháng 8 2020 lúc 9:45

Đặt: \(\sqrt{a}=x;\sqrt{b}=y;\sqrt{c}=z\)

=>     \(P=\frac{xy}{z^2+3xy}+\frac{yz}{x^2+3yz}+\frac{zx}{y^2+3zx}\)

=>     \(3P=\frac{3xy}{z^2+3xy}+\frac{3yz}{x^2+3yz}+\frac{3zx}{y^2+3zx}=1-\frac{z^2}{z^2+3xy}+1-\frac{x^2}{x^2+3yz}+1-\frac{y^2}{y^2+3zx}\)

Ta sẽ CM: \(3P\le\frac{9}{4}\)<=> Cần CM: \(\frac{x^2}{x^2+3yz}+\frac{y^2}{y^2+3zx}+\frac{z^2}{z^2+3xy}\ge\frac{3}{4}\)

Có:    \(VT\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)

Ta sẽ CM: \(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\ge\frac{3}{4}\)

<=> \(4\left(x+y+z\right)^2\ge3\left(x^2+y^2+z^2\right)+9\left(xy+yz+zx\right)\)

<=> \(4\left(x^2+y^2+z^2\right)+8\left(xy+yz+zx\right)\ge3\left(x^2+y^2+z^2\right)+9\left(xy+yz+zx\right)\)

<=> \(x^2+y^2+z^2\ge xy+yz+zx\)

Mà đây lại là 1 BĐT luôn đúng => \(3P\le\frac{9}{4}\)=> \(P\le\frac{3}{4}\)

Vậy P max \(=\frac{3}{4}\)<=> \(a=b=c\)

Khách vãng lai đã xóa
Shino Asada
Xem chi tiết
Phạm Minh Quang
8 tháng 2 2020 lúc 20:13

a.

\(a^2+b^2+c^2\ge ab+bc+ca\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

(luôn đúng)

b. Áp dụng BĐT \(x^2+y^2\ge2xy\)

\(a^2+b^2\ge2ab,a^2+1\ge2a,b^2+1\ge2b\)\(\Rightarrow2\left(a^2+b^2+1\right)\ge2\left(ab+a+b\right)\Leftrightarrow a^2+b^2+1\ge ab+a+b\)

c. Tương tự câu b

Khách vãng lai đã xóa
Phạm Minh Quang
8 tháng 2 2020 lúc 20:18

Áp dụng BĐT Cô si ta có

i. \(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}},\frac{1}{b}+\frac{1}{c}\ge\frac{2}{\sqrt{bc}},\frac{1}{c}+\frac{1}{a}\ge\frac{2}{\sqrt{ca}}\)

\(\Rightarrow2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge2\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\)\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\)

k. Tương tự câu i

Khách vãng lai đã xóa
Linh Le Thuy
Xem chi tiết
Hung nguyen
11 tháng 10 2018 lúc 19:29

Đề sai rồi: a,b,c > 0 thì làm sao mà có: ab + bc + ca = 0 được.

Nguyễn Huy Thắng
12 tháng 10 2018 lúc 15:06

may cai nay tuong hoi truoc co nguoi dang roi ma

ta có:

\(\sqrt{\dfrac{\left(a+b\right).\left(a+c\right)}{a^2}}\le\dfrac{1}{2}.\left(\dfrac{a+b}{a}+\dfrac{a+c}{a}\right)=a+\dfrac{b}{2}+\dfrac{c}{2}\)

tương tự thì ta có:

\(VP\le3+2\left(a+b+c\right)\)

\(VP=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=3+\dfrac{2}{ab}+\dfrac{2}{ac}+\dfrac{2}{bc}\)

từ các điều trên ta thấy cần CM:

\(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge a+b+c\)

bạn tự CM nốt ạ

S U G A R
Xem chi tiết
missing you =
19 tháng 1 2023 lúc 19:22

\(ab+bc+ca\le1\)

\(\Rightarrow\sqrt{a^2+1}\ge\sqrt{a^2+ab+bc+ca}=\sqrt{\left(a+b\right)\left(a+c\right)}\)

\(\Rightarrow\dfrac{a}{\sqrt{a^2+1}}\le\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{a}{a+b}+\dfrac{a}{a+c}}{2}\)

\(tương\) \(tự\Rightarrow\Sigma\dfrac{a}{\sqrt{a^2+1}}\le\dfrac{\dfrac{a}{a+b}+\dfrac{a}{a+c}}{2}+\dfrac{\dfrac{b}{a+b}+\dfrac{b}{b+c}}{2}+\dfrac{\dfrac{c}{b+c}+\dfrac{c}{a+c}}{2}=\dfrac{3}{2}\left(đpcm\right)\)

\(dấu"="\Leftrightarrow a=b=c=\sqrt{\dfrac{1}{3}}\)

shitbo
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 7 2020 lúc 19:23

\(VT=\sqrt{\left(ab\right)^2+a^2}+\sqrt{\left(bc\right)^2+b^2}+\sqrt{\left(ca\right)^2+c^2}\)

\(VT\ge\sqrt{\left(ab+bc+ca\right)^2+\left(a+b+c\right)^2}\)

\(VT\ge\sqrt{\left(ab+bc+ca\right)^2+3\left(ab+bc+ca\right)}=2\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)