Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
Mysterious Person
3 tháng 9 2018 lúc 9:12

a) ta có : \(\dfrac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}=x+\sqrt{xy}+y\)

b) ta có : \(\dfrac{x-\sqrt{3x}+3}{x\sqrt{x}+3\sqrt{3}}=\dfrac{x-\sqrt{3x}+3}{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{3x}+3\right)}=\dfrac{1}{\sqrt{x}+\sqrt{y}}\)

Ngoc Anh Thai
Xem chi tiết
HT2k02
15 tháng 4 2021 lúc 6:20

Câu 1:

a) ĐKXĐ: \(x>0;x\ne9\)

Với x=36 (thỏa mãn ĐKXĐ) thì A có giá trị :

\(A=\dfrac{\sqrt{36}+2}{1+\sqrt{36}}=\dfrac{6+2}{1+6}=\dfrac{8}{7}\)

 

b) Ta có: 

\(B=\left(\dfrac{2\sqrt{x}}{x-\sqrt{x}-6}+\dfrac{\sqrt{x}}{\sqrt{x}-3}\right):\dfrac{\sqrt{x}}{\sqrt{x}-3}=\dfrac{2\sqrt{x}+\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}=\dfrac{x+4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\)

 

c) Ta có:

\(P=A\cdot B=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\cdot\dfrac{\sqrt{x}+4}{\sqrt{x}+2}=\dfrac{\sqrt{x}+4}{\sqrt{x}+1}=1+\dfrac{3}{\sqrt{x}+1}\)

Vì x là số nguyên lớn hơn 0 nên 

\(x\ge1\Rightarrow\sqrt{x}\ge1\Rightarrow\sqrt{x}+1\ge2>0\Rightarrow P\le1+\dfrac{3}{2}=\dfrac{5}{2}\)

Dấu bằng xảy ra khi x=1;

 

 

HT2k02
15 tháng 4 2021 lúc 9:53

Gọi số sản phẩm dự định của xí nghiệp A và B lần lượt là x,y \(\left(x,y\in N;0< x,y< 720\right)\)

Vì tổng sản phẩm dự định là 720 nên ta có phương trình: \(x+y=720\left(1\right)\)

Vì thực tế , xí nghiệp A hoàn thành vượt mức 12% nên số sản phẩm xí nghiệp A thực tế là : \(112\%x=\dfrac{28}{25}x\)

Xí nghiệp B hoàn thành vượt mức 10% nên số sản phẩm xí nghiệp B thực tế là : \(110\%y=\dfrac{11}{10}y\)

Vì tổng số sản phẩm thực tế là 800 nên ta có phương trình: \(\dfrac{28}{25}x+\dfrac{11}{10}y=800\Leftrightarrow56x+55y=40000\left(2\right)\)

Từ (1)(2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}x+y=720\\56x+55y=40000\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=720\\55\cdot720+x=40000\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=400\\y=320\end{matrix}\right.\left(t.m\right)\)

Vậy số sản phẩm 2 xí nghiệp làm theo kế hoạch lần lượt là 400 và 320 sản phẩm

HT2k02
15 tháng 4 2021 lúc 10:19

1) Ta có phương trình:

\(3x^4-2x^2-40=0\Leftrightarrow\left(3x^4-12x^2\right)+\left(10x^2-40\right)=0\Leftrightarrow\left(x^2-4\right)\left(3x^2+10\right)=0\)

Mà \(3x^2+10\ge10>0\)

\(\Leftrightarrow x^2-4=0\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)

Vậy \(S=\left\{\pm2\right\}\) là tập nghiệm của phương trình

 

2)

Xét phương trình bậc 2 ẩn x :

\(x^2+\left(m-1\right)x-m^2-2=0\left(1\right)\)

Có hệ số: \(a=1;b=m-1;c=-m^2-2\)

\(\Rightarrow ac=-m^2-2\le-2< 0\)

Suy ra (1) có 2 nghiệm trái dấu \(x_1,x_2\) với mọi m thỏa mãn:

\(\left\{{}\begin{matrix}x_1+x_2=1-m\\x_1x_2=-m^2-2\end{matrix}\right.\left(2\right)\)

Đặt \(\left(\dfrac{x_1}{x_2}\right)^3=-a\left(a>0\right)\Rightarrow\left(\dfrac{x_2}{x_1}\right)^3=-\dfrac{1}{a}\) (do x1,x2 là 2 số trái dấu)

\(\Rightarrow T=-\left(a+\dfrac{1}{a}\right)\)

Áp dụng bất đẳng thức Cô-si cho 2 số dương \(a\) và \(\dfrac{1}{a}\) ta có:

\(a+\dfrac{1}{a}\ge2\sqrt{a\cdot\dfrac{1}{a}}=2\)

\(\Rightarrow T\le-2\)

Dấu "=" xảy ra \(\Leftrightarrow a=\dfrac{1}{a}\Leftrightarrow a=1\left(a>0\right)\Leftrightarrow x_1=-x_2\)

(2) trở thành: \(\left\{{}\begin{matrix}m-1=0\\x_1^2=m^2+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=1\\x_1^2=3\left(t.m\right)\end{matrix}\right.\)

Vậy T đạt giá trị nhỏ nhất là -2 tại m=1

 

Lê Hương Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 7 2021 lúc 20:26

Ta có: \(A=\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right):\left(x-y\right)+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

\(=\dfrac{\left(x-2\sqrt{xy}+y\right)}{x-y}+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

\(=\dfrac{\sqrt{x}-\sqrt{y}+2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

=1

Ngoc Anh Thai
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 4 2021 lúc 23:03

Câu 2: 

2) Ta có: \(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)

\(=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2\sqrt{x}-9-x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{-\sqrt{x}}{\sqrt{x}-3}\)

Minh Nhân
16 tháng 4 2021 lúc 23:07

Câu 2 : 

Gọi : vận tốc của người đi chậm là : x (km/h) ( x > 0 ) 

Vận tốc của người đi nhanh : x + 4 (km/h) 

Vi : người đi chậm đến muộn hơn : 45 phút \(=\dfrac{3}{4}\left(h\right)\)

Khi đó : 

\(\dfrac{36}{x}-\dfrac{36}{x+4}=\dfrac{3}{4}\)

\(\Leftrightarrow\left[36\cdot\left(x+4\right)-36x\right]\cdot4=3x\cdot\left(x+4\right)\)

\(\Leftrightarrow3x^2+12x-144=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=12\left(n\right)\\x=16\left(l\right)\end{matrix}\right.\)

 

 

Nguyễn Lê Phước Thịnh
16 tháng 4 2021 lúc 23:01

Câu 1: 

1) Thay x=16 vào N, ta được:

\(N=\dfrac{2\cdot\sqrt{16}+1}{3-\sqrt{16}}=\dfrac{2\cdot4+1}{3-4}=\dfrac{9}{-1}=-9\)

Vậy: Khi x=16 thì N=-9

Ngoc Anh Thai
Xem chi tiết
HT2k02
8 tháng 4 2021 lúc 10:50

Tiếp bạn Thịnh 

1c)

Ta có:

\(S=A\cdot B=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\cdot\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=1+\dfrac{1}{\sqrt{x}+2}\)

Mà \(\sqrt{x}\ge0\Rightarrow S\le1+\dfrac{1}{1+2}=1+\dfrac{1}{3}=\dfrac{4}{3}\)

Dấu "=" xảy ra khi x=0

HT2k02
8 tháng 4 2021 lúc 10:55

Câu 2:

a) Để hưởng ứng phong trào phòng chống dịch COVID-19, một chi đoàn thanh niên dự định làm 600 chiếc mũ ngăn giọt bắn trong một thời gian quy định. Nhờ tăng năng suất lao động mỗi giờ chi đoàn đó làm được nhiều hơn so với kế hoạch là 30 chiếc nên công việc được hoàn thành sớm hơn quy định 1 giờ. Hỏi theo kế hoạch 1 giờ chi đoàn đó phải làm bao nhiêu chiếc mũ ngăn giọt bắn?

Giải : Gọi số chiếc mũ làm 1 h theo dự định là x (x là số tự nhiên khác 0 )

Vì có tất cả 600 chiếc nên làm trong 600/x giờ

Vì mỗi giờ chi đoàn đó làm được nhiều hơn so với kế hoạch là 30 chiếc (x+30 chiếc) nên công việc được hoàn thành trong 600/30+x.

Vì làm sớm hơn 1  h nên ta có phương trình:

600/x = 600/(30+x)+1

<=> 600(x+30)= 600x + (x+30)x

<=> x^2+30x - 18000=0

<=> (x-120)(x+150)=0

<=> x=120 (thỏa mãn x là số tự nhiên khác 0)

Đỗ Thanh Hải
8 tháng 4 2021 lúc 11:57

undefined

undefined

undefined

undefined

Diệu Anh
Xem chi tiết
Lê Thị Thục Hiền
3 tháng 7 2021 lúc 11:58

\(A=\dfrac{1-\sqrt{x}}{\sqrt{x}+2}=\dfrac{3-\left(\sqrt{x}+2\right)}{\sqrt{x}+2}=\dfrac{3}{\sqrt{x}+2}-1\)

Có \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+2\ge2\Leftrightarrow\dfrac{3}{\sqrt{x}+2}\le\dfrac{3}{2}\)\(\Leftrightarrow\dfrac{3}{\sqrt{x}+2}-1\le\dfrac{1}{2}\)\(\Leftrightarrow A\le\dfrac{1}{2}\)

Dấu "=" xảy ra khi x=0 (tm)

Vậy \(A_{max}=\dfrac{1}{2}\)

Bài 2:

Đk: \(x\ge3;y\ge5;z\ge4\)

Pt\(\Leftrightarrow\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}+\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}+\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}=20\)

Áp dụng AM-GM có:

\(\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}\ge2\sqrt{\sqrt{x-3}.\dfrac{4}{\sqrt{x-3}}}=4\)

\(\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}\ge6\)

\(\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}\ge10\)

Cộng vế với vế \(\Rightarrow VT\ge20\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\sqrt{x-3}=\dfrac{4}{\sqrt{x-3}}\\\sqrt{y-5}=\dfrac{9}{\sqrt{y-5}}\\\sqrt{z-4}=\dfrac{25}{\sqrt{z-4}}\end{matrix}\right.\)\(\Leftrightarrow x=7;y=14;z=29\) (tm)

Vậy...

Phạm Thị Thùy Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 8 2021 lúc 13:27

a: \(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{5}+1-\sqrt{5}+1\)

=2

c: \(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}=\sqrt{x}+\sqrt{y}\)

d: \(\dfrac{y-2\sqrt{y}+1}{\sqrt{y}-1}=\sqrt{y}-1\)

Yết Thiên
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2021 lúc 21:25

1: \(A=\dfrac{x-2\sqrt{xy}+y}{x-y}=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}=\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

2: Thay \(x=3+2\sqrt{2}\) và \(y=3-2\sqrt{2}\) vào A, ta được:

\(A=\dfrac{\sqrt{2}+1-\sqrt{2}+1}{\sqrt{2}+1+\sqrt{2}-1}=\dfrac{2}{2\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)

illumina
Xem chi tiết
HT.Phong (9A5)
6 tháng 12 2023 lúc 7:01

a) \(B=\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}+\dfrac{x\sqrt{x}-y\sqrt{y}}{y-x}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\left(x,y\ge0;x\ne y\right)\)

\(B=\left[\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}-\dfrac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{x-y}\right]:\dfrac{x-2\sqrt{xy}+y+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

\(B=\left[\left(\sqrt{x}+\sqrt{y}\right)-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right]:\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)

\(B=\left[\left(\sqrt{x}+\sqrt{y}\right)-\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right]:\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)

\(B=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x+\sqrt{xy}+y}\)

\(B=\dfrac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x+\sqrt{xy}+y}\)

\(B=\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x+\sqrt{xy}+y}\)

\(B=\dfrac{\sqrt{xy}}{x+\sqrt{xy}+y}\)

b) Xét tử: 

\(\sqrt{xy}\ge0\forall x,y\) (xác định) (1) 

Xét mẫu: 

\(x+\sqrt{xy}+y\)

\(=\left(\sqrt{x}\right)^2+2\cdot\dfrac{1}{2}\sqrt{y}\cdot\sqrt{x}+\left(\dfrac{1}{2}\sqrt{y}\right)^2+\dfrac{3}{4}y\)

\(=\left(\sqrt{x}+\dfrac{1}{2}\sqrt{y}\right)^2+\dfrac{3}{4}y\)

Mà: \(\left(\sqrt{x}+\dfrac{1}{2}\sqrt{y}\right)^2\ge0\forall x,y\) (xác định), còn: \(\dfrac{3}{4}y\ge0\) vì theo đkxđ thì \(y\ge0\) (2) 

Từ (1) và (2) ⇒ B luôn không âm với mọi x,y (\(B\ge0\)) (đpcm)