Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Akai Haruma
10 tháng 3 2021 lúc 23:28

Với $a,b,c>0$ thì $a^3+b^3+3abc> ab(a+b+c)$ chứ không có dấu "=" nhé bạn. Còn về cách làm thì bạn Trương Huy Hoàng đã làm rất chi tiết rồi.

Trương Huy Hoàng
10 tháng 3 2021 lúc 22:49

a3 + b3 + 3abc \(\ge\) ab(a + b + c)

\(\Leftrightarrow\) a3 + b3 + 3abc - a2b - ab2 - abc \(\ge\) 0

\(\Leftrightarrow\) a3 + b3 + 2abc - a2b - ab2 \(\ge\) 0

\(\Leftrightarrow\) a2(a - b) - b2(a - b) + 2abc \(\ge\) 0

\(\Leftrightarrow\) (a - b)(a2 - b2) + 2abc \(\ge\) 0

\(\Leftrightarrow\) (a - b)2(a + b) + 2abc \(\ge\) 0 (luôn đúng với mọi a, b, c > 0)

Chúc bn học tốt!

Võ Thị Huyền Trinh
Xem chi tiết
Aka
Xem chi tiết
AE575DRTQ ỨAE65U5W
Xem chi tiết
Đinh Đức Hùng
4 tháng 5 2018 lúc 14:45

\(BDT\Leftrightarrow\left(\frac{a}{a+b}-\frac{1}{2}\right)+\left(\frac{b}{b+c}-\frac{1}{2}\right)+\left(\frac{c}{c+a}-\frac{1}{2}\right)\ge0\)

\(\Leftrightarrow\frac{a-b}{2\left(a+b\right)}+\frac{b-c}{2\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}\ge0\)

\(\Leftrightarrow\frac{a-b}{2\left(a+b\right)}+\frac{\left(b-a\right)+\left(a-c\right)}{2\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}\ge0\)

\(\Leftrightarrow\frac{1}{2}\left(a-b\right)\left(\frac{1}{a+b}-\frac{1}{b+c}\right)+\frac{1}{2}\left(a-c\right)\left(\frac{1}{b+c}-\frac{1}{c+a}\right)\ge0\)

\(\Leftrightarrow\frac{\left(c-a\right)\left(a-b\right)}{2\left(a+b\right)\left(b+c\right)}+\frac{\left(a-c\right)\left(a-b\right)}{2\left(b+c\right)\left(c+a\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-c\right)\left(a-b\right)}{2\left(b+c\right)}\left(-\frac{1}{a+b}+\frac{1}{c+a}\right)\ge0\)

\(\Leftrightarrow\frac{\left(a-c\right)\left(a-b\right)\left(b-c\right)}{2\left(a+b\right)\left(a+c\right)\left(b+c\right)}\ge0\)(luôn đúng \(\forall a\ge b\ge c>0\))

Vậy BĐT đã được chứng minh

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 7 2017 lúc 3:11

a) Xét hàm số f(x) = tanx − sinx trên nửa khoảng [0; π/2);

Giải sách bài tập Toán 12 | Giải sbt Toán 12

x ∈ [0;1/2)

Dấu “=” xảy ra khi x = 0.

Suy ra f(x) đồng biến trên nửa khoảng [0; π/2)

Mặt khác, ta có f(0) = 0, nên f(x) = tanx – sinx > 0 hay tanx > sinx với mọi x ∈ [0; 1/2)

b) Xét hàm số h(x) trên [0; + ∞ )

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Dấu “=” xẩy ra chỉ tại x = 0 nên h(x) đồng biến trên nửa khoảng [0;  + ∞ ).

Vì h(x) = 0 nên

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hay

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Xét hàm số trên f(x) trên [0;  + ∞ );

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì g(0) = 0 và g(x) đồng biến trên nửa khoảng [0;  + ∞ ) nên g(x) ≥ 0, tức là f′(x) ≥ 0 trên khoảng đó và vì dấu “=” xảy ra chỉ tại x = 0 nên f(x) đồng biến trên nửa khoảng .

Mặt khác, ta có f(0) = 0 nên

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Với mọi 0 < x <  + ∞ .

Ánh Dương
Xem chi tiết
Nguyễn Ngọc Lộc
8 tháng 5 2021 lúc 16:28

Ta có : \(\left(a-b\right)^2\ge0\)

\(\Rightarrow a^2+b^2+2ab\ge4ab\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

Có : \(a,b\ge0\)

\(\Rightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\) ( đpcm )

Vậy ...

le thi khanh huyen
Xem chi tiết
Đinh quang hiệp
21 tháng 6 2018 lúc 8:02

vì a>0;b>0;c>0\(\Rightarrow\sqrt{a};\sqrt{b};\sqrt{c}\)luôn được xác định

\(\left(\sqrt{a}-\sqrt{b}\right)^2>=0\Rightarrow a-2\sqrt{ab}+b>=0\Rightarrow a+b>=2\sqrt{ab}\)

\(\left(\sqrt{b}-\sqrt{c}\right)^2>=0\Rightarrow b-2\sqrt{bc}+c>=0\Rightarrow b+c>=2\sqrt{bc}\)

\(\left(\sqrt{c}-\sqrt{a}\right)^2>=0\Rightarrow c-2\sqrt{ca}+a>=0\Rightarrow c+a>+2\sqrt{ca}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)>=2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{a^2b^2c^2}=8abc\)(đpcm)

dấu = xảy ra khi a=b=c

ミ★kͥ-yͣeͫt★彡
16 tháng 9 2019 lúc 6:05

Áp dụng ĐBT Cauchy - schwarz cho 2 số không âm, ta được:

\(a+b\ge2\sqrt{ab}\)

\(b+c\ge2\sqrt{bc}\)

\(a+c\ge2\sqrt{ac}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\sqrt{\left(abc\right)^2}=8abc\left(đpcm\right)\)

Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 4 2021 lúc 21:56

a) Ta có: \(\left(a-1\right)^2\ge0\forall a\)

\(\Leftrightarrow a^2-2a+1\ge0\forall a\)

\(\Leftrightarrow a^2+2a+1\ge4a\forall a\)

\(\Leftrightarrow\left(a+1\right)^2\ge4a\)(đpcm)

HT2k02
10 tháng 4 2021 lúc 21:58

b) Áp dụng bất đẳng thức Cosi ta có:

\(a+1\ge2\sqrt{a};b+1\ge2\sqrt{b};c+1\ge2\sqrt{c}\\ \Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\sqrt{abc}=8\)

Dấu = xảy ra khi và chỉ khi a=b=c=1

Lê Ngọc Gia Hân
Xem chi tiết
Rhider
18 tháng 2 2022 lúc 15:35

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\Leftrightarrow a+b-2\sqrt{ab}\ge0\Leftrightarrow a+b\ge2\sqrt{ab}\Leftrightarrow\frac{a+b}{2}\ge\sqrt{ab}\)

Đỗ Tuệ Lâm
18 tháng 2 2022 lúc 15:38

undefined

Phạm khang
22 tháng 2 2022 lúc 10:05

Cho xin Zalo với