50%+1.5:(1-\(\dfrac{1}{3}\))
bài1
a,x-25%x=0.5
b,(50%x+\(5\dfrac{1}{4}\)).\(\dfrac{-2}{3}\)=\(2\dfrac{5}{6}\)
c,(\(1\dfrac{1}{3}\) -25%-\(\dfrac{5}{12}\) )+2x=1.5:\(\dfrac{3}{5}\)
a) \(x-25\%x=0,5\)
\(\dfrac{3}{4}x=0,5\)
x = \(\dfrac{2}{3}\)
b) \(\left(50\%x+5\dfrac{1}{4}\right).\dfrac{-2}{3}=2\dfrac{5}{6}\)
\(\left(0,5x+\dfrac{21}{4}\right)=\dfrac{-17}{4}\)
\(0,5x=\dfrac{-19}{2}\)
x = -19
c) \(\left(1\dfrac{1}{3}-25\%-\dfrac{5}{12}\right)+2x=1,5:\dfrac{3}{5}\)
\(\dfrac{2}{3}+2x=\dfrac{5}{2}\)
\(2x=\dfrac{11}{6}\)
x= \(\dfrac{11}{12}\)
a) \(\dfrac{3}{1.4}\) +\(\dfrac{3}{4.7}\) + \(\dfrac{3}{7.10}\) + ... + \(\dfrac{3}{121.124}\)
b) \(\dfrac{3}{2.3}\) + \(\dfrac{3}{3.4}\) + ... + \(\dfrac{3}{100.101}\)
c) \(\dfrac{1}{1.5}\) + \(\dfrac{1}{5.9}\) + \(\dfrac{1}{9.13}\) + ... + \(\dfrac{1}{401.405}\)
d) \(\dfrac{2}{1.3}\) + \(\dfrac{2}{3.5}\) + \(\dfrac{2}{5.7}\) + ... + \(\dfrac{2}{99.101}\)
a: \(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{121}-\dfrac{1}{124}=1-\dfrac{1}{124}=\dfrac{123}{124}\)
b: \(=3\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{101}\right)=3\cdot\dfrac{99}{202}=\dfrac{297}{202}\)
c: \(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-...+\dfrac{1}{401}-\dfrac{1}{405}\right)=\dfrac{1}{4}\cdot\dfrac{404}{405}=\dfrac{101}{405}\)
d: \(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}=1-\dfrac{1}{101}=\dfrac{100}{101}\)
So sánh:
a, \(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{50}}\) và \(\dfrac{1}{2}\)
b, \(\dfrac{1}{4}-\dfrac{1}{4^2}+\dfrac{1}{4^3}-...+\dfrac{1}{4^{99}}\) và \(\dfrac{1}{12}\)
c, \(\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{50}{3^{50}}\) và \(\dfrac{3}{4}\)
a/ Đặt :
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+.........+\dfrac{1}{3^{50}}\)
\(\Leftrightarrow3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+.......+\dfrac{1}{3^{49}}\)
\(\Leftrightarrow3A-A=\left(1+\dfrac{1}{3}+....+\dfrac{1}{3^{49}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+....+\dfrac{1}{3^{50}}\right)\)
\(\Leftrightarrow2A=1-\dfrac{1}{3^{50}}\)
còn sao nx thì mk chịu =.=
Chứng minh rằng : \(\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+...+\dfrac{1}{50}=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}\)
Ta có :
Vế phải =1 - 1/2 + 1/3 - 1/4 + ... + 1/49 - 1/50
= (1+ 1/3 + 1/5 + ... + 1/49) - (1/2 + 1/4 + ... +1/50)
<=> (1 + 1/2 + 1/3 + 1/4 + ... + 1/49+1/50)- 2(1/2 +1/4 +...+1/50)
=(1+1/2 +1/3 +1/4...+ 1/49+1/50) - (1+1/2 +...+1/25)
=1/26 + 1/27 +1/28 +...+1/50 (đpcm)
tính \(B=\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{50}}-\dfrac{1}{3^{51}}\)
\(B=\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{50}}-\dfrac{1}{3^{51}}\)
\(=\dfrac{1}{\left(-3\right)}+\dfrac{1}{\left(-3\right)^2}+\dfrac{1}{\left(-3\right)^3}+...+\dfrac{1}{\left(-3\right)^{50}}+\dfrac{1}{\left(-3\right)^{51}}-\dfrac{1}{3}\)
\(=\dfrac{1}{\left(3\right)^2}+\dfrac{1}{\left(3\right)^3}+...+\dfrac{1}{\left(-3\right)^{51}}+\dfrac{1}{\left(-3\right)^{52}}\)
\(\Rightarrow\dfrac{4}{3}B=\dfrac{1}{-3}-\dfrac{1}{\left(-3\right)^{52}}=\dfrac{-3^{51}-1}{3^{52}}\Rightarrow B=\dfrac{-3^{51}-1}{4.3^{51}}\)
Tính
a) \(\dfrac{13}{50}.\left(-15.5\right):\dfrac{13}{50}.84\dfrac{1}{2}\)
b) \(\dfrac{\left(-0,7\right)^2.\left(-5\right)^3}{\left(-2\dfrac{1}{3}\right)^3.\left(1\dfrac{1}{2}\right)^4.\left(-1\right)^5}\)
\(a,=\dfrac{13}{50}\cdot\dfrac{50}{13}\cdot\left(-\dfrac{31}{2}\right)\cdot\dfrac{169}{2}=-\dfrac{5239}{2}\\ b,=\dfrac{-\dfrac{49}{100}\cdot\left(-125\right)}{-\dfrac{343}{27}\cdot\dfrac{81}{16}\cdot\left(-1\right)}=\dfrac{\dfrac{245}{4}}{\dfrac{1029}{16}}=\dfrac{245}{4}\cdot\dfrac{16}{1029}=\dfrac{20}{21}\)
a) \(\dfrac{13}{50}.\left(-15.5\right):\dfrac{13}{50}.84\dfrac{1}{2}=\dfrac{13}{50}.-75:\dfrac{13}{50}.\dfrac{169}{2}=-\dfrac{75.169}{2}=-\dfrac{12675}{2}\)
b) \(\dfrac{\left(-0,7\right)^2.\left(-5\right)^3}{\left(-2\dfrac{1}{3}\right)^3.\left(1\dfrac{1}{2}\right)^4.\left(-1\right)^5}=\dfrac{0,49.\left(-125\right)}{-\dfrac{343}{27}.\dfrac{81}{16}.\left(-1\right)}=-\dfrac{\dfrac{245}{4}}{\dfrac{1029}{16}}=\dfrac{20}{21}\)
Bài 1: Tính nhanh:
a) \(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{50}}\)
b)\(\dfrac{5}{3}+\dfrac{5}{3^2}+\dfrac{5}{3^3}+...+\dfrac{5}{3^{50}}\)
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{50}}\)
\(3.A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{49}}\)
\(2A=3A-A=1-\dfrac{1}{3^{49}}\)
\(\Rightarrow A=\dfrac{1-\dfrac{1}{3^{50}}}{2}\)
\(B=\dfrac{5}{3}+\dfrac{5}{3^2}+...+\dfrac{5}{3^{50}}=5\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{50}}\right)\)
Căn cứ vào câu A thì các trong ngặc bằng \(\dfrac{1-\dfrac{1}{3^{50}}}{2}\)
suy ra \(B=\dfrac{5\left(1-\dfrac{1}{3^{50}}\right)}{2}\)
tick mik nha
tìm x biết
\(\left(\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\right):x=\dfrac{99}{50}-\dfrac{97}{49}+...+\dfrac{7}{4}-\dfrac{5}{3}+\dfrac{3}{2}-1\)
Thực hiện phép tính:
C=\(-\dfrac{1}{3}\left(1+2+3\right)-\dfrac{1}{4}\left(1+2+3+4\right)-....-\dfrac{1}{50}\left(1+2+3+...+50\right)\)
các bạn gúp mình với nha!
\(C=-\left[\dfrac{1}{3}\cdot\dfrac{\left(3+1\right)\cdot3}{2}+\dfrac{1}{4}\cdot\dfrac{\left(4+1\right)\cdot4}{2}+...+\dfrac{1}{50}\cdot\dfrac{\left(50+1\right)\cdot50}{2}\right]\\ C=-\left(\dfrac{1}{3}\cdot\dfrac{4\cdot3}{2}+\dfrac{1}{4}\cdot\dfrac{5\cdot4}{2}+...+\dfrac{1}{50}\cdot\dfrac{51\cdot50}{2}\right)\\ C=-\left(2+\dfrac{5}{2}+...+\dfrac{51}{2}\right)\\ C=-\dfrac{4+5+...+51}{2}=-\dfrac{\dfrac{\left(51+4\right)\left(51-4+1\right)}{2}}{2}=-\dfrac{55\cdot48}{4}=-660\)