Chứng minh rằng nếu $xy+yz+zx=5$ thì $3x^2+3y^2+z^2 \ge 10$.
Cho \(x^6+y^6+z^6=3\) và \(x;y;z>0\)
Chứng minh rằng:
\(\dfrac{x^3}{yz}+\dfrac{y^3}{zx}+\dfrac{z^3}{xy}\ge x^3y^3+y^3z^3+z^3x^3\)
Áp dụng BĐT cosi ta có:
`x^6+y^6+z^6>=3root{3}{x^6y^6z^6}=3x^2y^2z^2`
`=>3x^2y^2z^2<=3`
`=>x^2y^2z^2<=1`
`=>xyz<=1`
`=>(x^3)/(yz)+(y^3)/(zx)+(z^3)/(xy)`
`=(x^4)/(xyz)+(y^4)/(xyz)+(z^4)/(xyz)>=x^4+y^4+z^4(@)`
Áp dụng BĐT bunhia với 2 cặp số `(x^2,y^2,z^2),(x,y,z)`
`=>(x^2+y^2+z^2)(x^4+y^4+z^4)>=(x^3+y^3+z^3)^3`
Mà `(x^3+y^3+z^3)^2>=3(x^3y^3+y^3z^3+z^3x^3)`
`=>(x^2+y^2+z^2)(x^4+y^4+z^4)>=3(x^3y^3+y^3z^3+z^3x^3)(@@)`
Áp dụng BĐT cosi ta có:
`x^6+1+1>=3root{3}{x^6}=3x^2`
`y^6+1+1>=3y^2`
`z^6+1+1>=3z^2`
`=>x^6+y^6+z^6+6>=3(x^2+y^2+z^2)`
`=>9>=3(x^2+y^2+z^2)`
`=>x^2+y^2+z^2<=3`
Kết hợp với `(@@)`
`=>(x^2+y^2+z^2)(x^4+y^4+z^4)>=(x^2+y^2+z^2)(x^3y^3+y^3z^3+z^3x^3)`
`=>x^4+y^4+z^4>=x^3y^3+y^3z^3+z^3x^3`
Kếp hợp với `(@)`
`=>(x^3)/(yz)+(y^3)/(zx)+(z^3)/(xy)>=x^3y^3+y^3z^3+z^3x^3`
Dấu = xảy ra khi `x=y=z=1`
Cho các số dương \(x,y,z\) thỏa mãn điều kiện \(xy+yz+zx=671\). Chứng minh rằng: \(\dfrac{x}{x^2-yz+2013}+\dfrac{y}{y^2-zx+2013}+\dfrac{z}{z^2-xy+2013}\ge\dfrac{1}{x+y+z}\)
Có \(VT=\dfrac{x^2}{x^3-xyz+2013x}+\dfrac{y^2}{y^3-xyz+2013y}+\dfrac{z^2}{z^3-xyz+2013z}\)
\(\ge\dfrac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2013\left(x+y+z\right)}\)
\(=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]+2013\left(x+y+z\right)}\)
\(=\dfrac{x+y+z}{x^2+y^2+z^2-\left(xy+yz+zx\right)+3\left(xy+yz+zx\right)}\)
(vì \(2013=3.671=3\left(xy+yz+zx\right)\))
\(=\dfrac{x+y+z}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}\)
\(=\dfrac{x+y+z}{\left(x+y+z\right)^2}\)
\(=\dfrac{1}{x+y+z}\)
ĐTXR \(\Leftrightarrow\dfrac{1}{x^2-yz+2013}=\dfrac{1}{y^2-zx+2013}=\dfrac{1}{z^2-xy+2013}\)
\(\Leftrightarrow x^2-yz=y^2-zx=z^2-xy\)
\(\Leftrightarrow x=y=z\) (với \(x,y,z>0\))
Vậy ta có đpcm.
với mọi x;y;z . chứng minh rằng x2 + y2 + z2 ≥ xy = yz + zx
Chứng minh \(x^2+y^2+z^2\ge xy+yz+zx\)
\(x^2+y^2+z^2\ge xy+yz+zx\\ \Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(x^2-2zx+z^2\right)\ge0\\ \Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\left(luôn.đúng\right)\)
Dấu "=' xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\x-z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=z\\x=z\end{matrix}\right.\Leftrightarrow x=y=z\)
\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
Dấu "=" xảy ra khi \(x=y=z\)
Cho x, y, z > 0 và x + y + z = 1. Chứng minh rằng: \(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+zx+2x^2}\ge\sqrt{5}\)
\(VT=\sum\sqrt{\frac{1}{2}\left(x^2+2xy+y^2\right)+\frac{3}{2}\left(x^2+y^2\right)}\)
\(VT\ge\sum\sqrt{\frac{1}{2}\left(x+y\right)^2+\frac{3}{4}\left(x+y\right)^2}=\sum\sqrt{\frac{5}{4}\left(x+y\right)^2}\)
\(VT\ge\frac{\sqrt{5}}{2}\left(x+y\right)+\frac{\sqrt{5}}{2}\left(y+z\right)+\frac{\sqrt{5}}{2}\left(z+x\right)\)
\(VT\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
Chứng minh rằng : x8 + y8 + z8 ≥ x2y2z2 ( xy + yz + zx )
\(VT=\left(x^4\right)^2+\left(y^4\right)^2+\left(z^4\right)^2\ge\frac{1}{3}\left(x^4+y^4+z^4\right)^2\)
\(VT\ge\frac{1}{27}\left(x^2+y^2+z^2\right)^4=\frac{1}{27}\left(x^2+y^2+z^2\right)^3\left(x^2+y^2+z^2\right)\)
\(VT\ge\frac{1}{27}\left(3\sqrt[3]{x^2y^2z^2}\right)^3\left(xy+yz+zx\right)=x^2y^2z^2\left(xy+yz+zx\right)\)
Dấu "=" xảy ra khi \(x=y=z\)
Cho x,y,z>0 thỏa mãn xy+yz+zx=1. Chứng minh \(\frac{x}{x^2-yz+3}+\frac{y}{y^2-zx+3}+\frac{z}{z^2-xy+3}\ge\frac{1}{x+y+z}\)
Cho x, y, z dương. Chứng minh rằng: \(\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}\ge\sqrt{3}.\left(x+y+z\right)\)
Lời giải:
Ta thấy:
\(x^2+xy+y^2=\frac{3}{4}(x^2+2xy+y^2)+\frac{1}{4}(x^2-2xy+y^2)=\frac{3}{4}(x+y)^2+\frac{1}{4}(x-y)^2\)
\(\geq \frac{3}{4}(x+y)^2\) với mọi $x,y>0$
\(\Rightarrow \sqrt{x^2+xy+y^2}\geq \frac{\sqrt{3}}{2}(x+y)\)
Hoàn toàn tương tự:
\(\sqrt{y^2+yz+z^2}\geq \frac{\sqrt{3}}{2}(y+z); \sqrt{z^2+zx+x^2}\geq \frac{\sqrt{3}}{2}(x+z)\)
Cộng theo vế các BĐT trên và rút gọn:
\(\Rightarrow \sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+xz+x^2}\geq \sqrt{3}(x+y+z)\)
Ta có đpcm.
Dấu "=" xảy ra khi $x=y=z$
nếu x, y, z là các số thực thoả mãn xy+yx+zx=5 thì 3x^2+3y^2+z^2>= 10 ai tính nhanh cái này hộ mình với!!
\(2x^2+2y^2\ge4xy\)
\(4x^2+z^2\ge4xz\)
\(4y^2+z^2\ge4yz\)
Cộng vế:
\(2\left(3x^2+3y^2+z^2\right)\ge4\left(xy+yz+zx\right)\ge20\)
\(\Rightarrow3x^2+3y^2+z^2\ge10\)
Dấu "=" xảy ra tại \(\left(x;y;z\right)=\left(1;1;2\right);\left(-1;-1;-2\right)\)