so sanh
\(\sqrt{125}\)va 15
So sanh
16 va \(\sqrt{15}\). \(\sqrt{17}\)
Ta có :
√15.√17= √16-1.√16+1
=√162-1
Vì 162-1 < 162 nên
√162-1< √162
Vậy 16> √15.√17
\(\sqrt{15}\cdot\sqrt{17}=\sqrt{255}< \sqrt{256}=16\)
\(16=\sqrt{16^2}\)
\(16^2=\left(15+1\right).\left(17-1\right)=15.17-15+17=15.17+2\)
Mà \(15.17+2>15.17\)
\(\Leftrightarrow\sqrt{15.17+2}>\sqrt{15.17}\)
\(\Leftrightarrow16>\sqrt{15}.\sqrt{17}\)
So sanh: 625^6 va 125^8
Ta có như sau:
\(625^6=\left(5^4\right)^6=5^{24}\)
\(125^8=\left(5^3\right)^8=5^{24}\)
Mà: \(5^{24}=5^{24}\)
\(\Rightarrow625^6=125^8\)
so sanh 24^16 va 125^11
Bài giải :
Ta có : 24^16 = 1,2117*1022
125^11 = 1,1642*1023
Ta thấy : 1,1624*1023 > 1,2117*1022
Vậy 125^11 > 24^16
1`)So Sanh
a)\(\sqrt{24}+\sqrt{45}\) va 12
b)\(\sqrt{37}-\sqrt{15}\)va 2
giup mk voi nhe
a,Ta có:
\(\left(\sqrt{24}+\sqrt{45}\right)^2=24+45=69\)
\(12^2=144\)
Do 69<144 nên ...
b,tương tự ý a
a ) Ta co \(\sqrt{24}+\sqrt{45}< \sqrt{25}+\sqrt{49}=5+7=12\)
vay \(\sqrt{24}+\sqrt{45}< 12\)
b)ta co \(\sqrt{37}-\sqrt{15}>\sqrt{4}-\sqrt{0}=2-0=2\)
vay \(\sqrt{37}-\sqrt{15}>2\)
So sanh:
a, \(2-2\sqrt{3}\) va \(4-\sqrt{15}\)
b, \(\sqrt{11}+2\) va \(3+\sqrt{3}\)
a) \(2-2\sqrt{3}\) và \(4-\sqrt{15}\)
Giả sử : \(2-2\sqrt{3}\ge4-\sqrt{15}\)
⇔ \(\sqrt{15}-2\sqrt{3}\ge2\)
⇔ \(\left(\sqrt{15}-2\sqrt{3}\right)^2\ge2^2\)
⇔ 15 - \(12\sqrt{5}+12\) ≥ 4
⇔ 27 -4 ≥ \(12\sqrt{5}\)
⇔ 23 ≥ \(12\sqrt{5}\)
⇔ \(23^2\) ≥ \(\left(12\sqrt{5}\right)^2\)
⇔ 529 ≥ 720 (sai)
Vậy 2 - \(2\sqrt{3}< 4-\sqrt{15}\)
b) \(\sqrt{11}+2\) và \(3+\sqrt{3}\)
Giả sử : \(\sqrt{11}+2\le3+\sqrt{3}\)
⇔ \(\sqrt{11}-\sqrt{3}\le1\)
⇔ \(\left(\sqrt{11}-\sqrt{3}\right)^2\le1\)
⇔ 14 - \(2\sqrt{33}\) ≤ 1
⇔ 13 ≤ \(2\sqrt{33}\)
⇔ \(13^2\le\left(2\sqrt{33}\right)^2\)
⇔ 169 ≤ 132 (sai)
Vậy \(\sqrt{11}+2\ge3+\sqrt{3}\)
so sanh 125 mu 80 va 25 mu 118
so sanh p/s 123/125 va 49/72
so sanh cac so sau(khong dung may tinh)
a) 15 va \(\sqrt{235}\)
Ta có
15 = \(\sqrt{225}<\sqrt{235}\)
=> 15 < \(\sqrt{235}\)
bai 2: so sanh
a, 15 va \(\sqrt{235}\)
b,\(\sqrt{7}\)+ \(\sqrt{15}\)va 7