Ta có :
√15.√17= √16-1.√16+1
=√162-1
Vì 162-1 < 162 nên
√162-1< √162
Vậy 16> √15.√17
\(\sqrt{15}\cdot\sqrt{17}=\sqrt{255}< \sqrt{256}=16\)
\(16=\sqrt{16^2}\)
\(16^2=\left(15+1\right).\left(17-1\right)=15.17-15+17=15.17+2\)
Mà \(15.17+2>15.17\)
\(\Leftrightarrow\sqrt{15.17+2}>\sqrt{15.17}\)
\(\Leftrightarrow16>\sqrt{15}.\sqrt{17}\)
Ta thấy ;
\(\sqrt{15}.\sqrt{17}\)
= \(\sqrt{15.17}\)
= \(\sqrt{255}\)
So sánh \(16;\sqrt{255}\)
ta thấy :
\(16^2=256\)
\(\sqrt{255^2}=255\)
Do \(256>255\)
=> \(16>\sqrt{15}.\sqrt{17}\)