2020: (m x 2) với m =
1) y= (m^2 +1)x + 2020 chứng tỏ hàm số là hàm số bậc nhất với mọi m
2) Y= (m^2 + 1)x + 2020 chứng tỏ hàm số đồng biến với mọi m
a.
Ta có: \(m^2+1\ne0;\forall m\Rightarrow\) hàm số là hàm bậc nhất với mọi m
b.
\(m^2+1\ge1>0\) ; \(\forall m\Rightarrow\) hàm đồng biến với mọi m
cho phương trình x2 - (m -2)x - 3 = 0 (1) với m là tham số
Tìm m để phương tình (1) có 2 nghiệm x1; x2 thỏa mãn điều kiện $\sqrt{x^2_1+2020}-x_1=\sqrt{x_2^2+2020}+x_2$
- Ta có : \(x^2-\left(m-2\right)x-3=0\)
- Ta thấy : \(ac=1\left(-3\right)=-3< 0\)
=> Nên phương trình có hai nghiệm phân biệt .
- Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1x_2=-3\end{matrix}\right.\)
- Ta có : \(\sqrt{x^2_1+2020}-x_1=\sqrt{x^2_2+2020}+x_2\)
=> \(\sqrt{x^2_1+2020}-\sqrt{x^2_2+2020}=x_1+x_2\)
=> \(x^2_1+2020+x_2^2+2020-2\sqrt{\left(x^2_1+2020\right)\left(x^2_2+2020\right)}=x^2_1+x^2_2+2x_1x_2\)
=> \(4046=2\sqrt{\left(x^2_1+2020\right)\left(x^2_2+2020\right)}\)
=> \(4092529=\left(x^2_1+2020\right)\left(x^2_2+2020\right)\)
=> \(x^2_1x^2_2+2020x_1^2+2020x^2_2+4080400=4092528\)
=> \(2020x_1^2+2020x^2_2=12120\)
=> \(x^2_1+x^2_2=6\)
=> \(\left(x_1+x_2\right)^2-2x_1x_2=6\)
=> \(m^2-4m+4-2\left(-3\right)=6\)
=> \(m^2-4m+4=0\)
=> \(m=2\)
Vậy ....
\(x_1x_2=-3< 0\Rightarrow\)pt đã cho có 2 nghiệm trái dấu
\(\Leftrightarrow\sqrt{x_1^2+2020}-x_2=x_1+\sqrt{x_2^2+2020}\)
\(\Rightarrow x_1^2+2020+x_2^2-2x_2\sqrt{x_1^2+2020}=x_1^2+x_2^2+2020+2x_1\sqrt{x_2^2+2020}\)
\(\Rightarrow-x_2\sqrt{x_1^2+2020}=x_1\sqrt{x_2^2+2020}\)
\(\Rightarrow x_2^2\left(x_1^2+2020\right)=x_1^2\left(x_2^2+2020\right)\)
\(\Rightarrow x_1^2=x_2^2\Rightarrow x_1=-x_2\)
\(\Rightarrow x_1+x_2=0\Rightarrow m-2=0\Rightarrow m=2\)
Có thể thế vào tìm nghiệm và thay vào điều kiện đề bài để thử cho chặt chẽ hơn (do các bước biến đổi ko tương đương)
Tìm giá trị biểu thức sau:
x²⁰+2020.x¹⁹+2020.x¹⁸+2020.x¹⁷+....+2020.x²+2020.x+2020
Với x=2019
x4 + \(\sqrt{x^2+2020}\) = 2020
Giải phương trình.
Làm giúp mình với, gấp lắm ạ !!!
Đặt \(\sqrt{x^2+2020}=a>0\Rightarrow a^2-x^2=2020\)
Phương trình trở thành:
\(x^4+a=a^2-x^2\)
\(\Leftrightarrow x^4-a^2+x^2+a=0\)
\(\Leftrightarrow\left(x^2+a\right)\left(x^2-a+1\right)=0\)
\(\Leftrightarrow a=x^2+1\)
\(\Leftrightarrow\sqrt{x^2+2020}=x^2+1\)
\(\Leftrightarrow x^2+2020=x^4+2x^2+1\)
\(\Leftrightarrow x^4+x^2-2019=0\)
Bạn tự giải nốt, đơn giản rồi, chỉ là số quá to
Có bao nhiêu giá trị nguyên của tham số m ∈ [ -2020; 2020 ] thỏa mãn phương trình : \(x^2+\left(2-m\right)x+1=2\sqrt{x^3+x}\) có nghiệm ?
ĐKXĐ: \(x\ge0\)
\(x^2+1+\left(2-m\right)x-2\sqrt{x\left(x^2+1\right)}=0\)
Với \(x=0\) ko phải nghiệm, với \(x>0\) chia 2 vế cho x:
\(\Rightarrow\dfrac{x^2+1}{x}+2-m-2\sqrt{\dfrac{x^2+1}{x}}=0\)
Đặt \(\sqrt{\dfrac{x^2+1}{x}}=t\ge\sqrt{2}\)
\(\Rightarrow t^2-2t+2=m\)
Xét hàm \(f\left(t\right)=t^2-2t+m\) khi \(t\ge\sqrt{2}\)
\(\left\{{}\begin{matrix}a=1>0\\-\dfrac{b}{2a}=1< \sqrt{2}\end{matrix}\right.\) \(\Rightarrow f\left(t\right)\) đồng biến khi \(t\ge\sqrt{2}\)
\(\Rightarrow f\left(t\right)\ge f\left(\sqrt{2}\right)=4-2\sqrt{2}\)
\(\Rightarrow\) Pt có nghiệm khi \(m\ge4-2\sqrt{2}\)
Cho biểu thức \(f\left(x\right)=5^{\sqrt{1+\dfrac{1}{x^2}+\dfrac{1}{\left(x+1\right)^2}}}\), với x>0. Biết rằng f(1).f(2)...f(2020) = \(5^{\dfrac{m}{n}}\) với m, n là các số nguyên dương và phân số m/n tối giản. Chứng minh m-n^2 = -1
\(\sqrt{1+\dfrac{1}{x^2}+\dfrac{1}{\left(x+1\right)^2}}=\sqrt{\dfrac{x^2+\left(x+1\right)^2+x^2\left(x+1\right)^2}{x^2\left(x+1\right)^2}}=\sqrt{\dfrac{x^2\left(x+1\right)^2+2x^2+2x+1}{x^2\left(x+1\right)^2}}\)
\(=\sqrt{\dfrac{\left(x^2+x\right)^2+2\left(x^2+x\right)+1}{\left(x^2+x\right)^2}}=\sqrt{\dfrac{\left(x^2+x+1\right)^2}{\left(x^2+x\right)^2}}=\dfrac{x^2+x+1}{x^2+x}\)
\(=1+\dfrac{1}{x}-\dfrac{1}{x+1}\)
\(\Rightarrow f\left(1\right).f\left(2\right)...f\left(2020\right)=5^{1+1-\dfrac{1}{2}+1+\dfrac{1}{2}-\dfrac{1}{3}+...+1+\dfrac{1}{2020}-\dfrac{1}{2021}}\)
\(=5^{2021-\dfrac{1}{2021}}\)
\(\Rightarrow\dfrac{m}{n}=2021-\dfrac{1}{2021}=\dfrac{2021^2-1}{2021}\)
\(\Rightarrow m-n^2=2021^2-1-2021^2=-1\)
Tìm x, biết:
\(\frac{\left(2019-x\right)^2+\left(2019-x\right)\left(x-2020\right)+\left(x-2020\right)^2}{\left(2019-x\right)^2-\left(2019-x\right)\left(x-2020\right)+\left(x-2020\right)^2}=\frac{19}{49}\)
Các bạn mong giúp mình sớm nhé
ủa bạn j ơi chữ x chành bành ra trên đề kìa mà bạn bảo tìm làm j nữa
Tìm GTNN của biểu thức: M=x2-2xy+2y2+2x-10y+2020
Giúp mình với T.T
\(M=x^2-2xy+y^2+2x-2y+1+y^2-8y+16+2003=\left(x-y+1\right)^2+\left(y-4\right)^2+2003\ge2003\)
Vậy MAX=2003 đẳng thức xảy ra khi y=4, x=3
cho x,y thỏa mãn \((x+\sqrt{2020+x^2})\left(y+\sqrt{2020+y^2}\right)\)
tìm x+y