Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Hiệp
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 6 2017 lúc 17:59

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 1 2017 lúc 16:16

IamnotThanhTrung
Xem chi tiết
YunTae
29 tháng 5 2021 lúc 15:49

Đặt A = \(1+2+2^2+2^3+2^4+....+2^{100}\)

2A = \(2\left(1+2+2^2+2^3+2^4+....+2^{100}\right)\)

\(2+2^2+2^3+2^4+2^5+...+2^{101}\)

2A - A = \(\left(2+2^2+2^3+2^4+2^5+....+2^{101}\right)-\left(1+2^2+2^3+2^4+...+2^{100}\right)\)

\(2^{101}-1\)

 

Mặt Trăng
29 tháng 5 2021 lúc 15:59

undefined

Nếu bạn bt lm r thì ko nên ra câu hỏi nx đâu .

An Bùi
Xem chi tiết
Lấp La Lấp Lánh
11 tháng 9 2021 lúc 8:08

\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

\(\Rightarrow2A=2^2+2^3+2^4+...+2^{100}+2^{101}\)

\(\Rightarrow A=2A-A=2^2+2^3+2^4+...+2^{100}+2^{101}-2-2^2-2^3-2^4-...-2^{99}-2^{100}=2^{101}-2\)

Nguyễn Nhân Dương
Xem chi tiết
boi đz
5 tháng 8 2023 lúc 21:48

\(A=2^{100}-2^{99}+2^{98}-2^{97}+....-2^3+2^2-2+1\\ A=\left(2^{100}+2^{98}+...+2\right)-\left(2^{99}+2^{97}+...+1\right)\)

Gọi \(\left(2^{100}+2^{98}+...+2\right)\)là B

\(B=\left(2^{100}+2^{98}+...+2\right)\\ 2B=2^{102}+2^{100}+.....+2^2\\ 2B-B=\left(2^{102}+2^{100}+.....+2^2\right)-\left(2^{100}+2^{98}+...+2\right)\\ B=2^{102}-2\)

Gọi \(\left(2^{99}+2^{97}+...+1\right)\) là C

\(C=\left(2^{99}+2^{97}+...+1\right)\\ 2C=2^{101}+2^{99}+....+2\\ 2C-C=\left(2^{101}+2^{99}+9^{97}+...+2\right)-\left(2^{99}+9^{97}+...+1\right)\\ C=2^{101}-1\)

\(A=B+C\\ =>A=2^{102}-2+2^{101}-1\\ A=2^{101}\left(2+1\right)-3\\ A=2^{101}\cdot3-3\\ A=3\cdot\left(2^{101}-1\right)\)

Hà Quang Minh
5 tháng 8 2023 lúc 21:35

\(\dfrac{1}{2}A=2^{99}-2^{98}+...-1+\dfrac{1}{2}\\ \Rightarrow A-\dfrac{1}{2}A=2^{100}-\dfrac{1}{2}\\ \Rightarrow A=2^{101}-1\)

Ngô Minh Khuê
Xem chi tiết
Nguyễn Hoàng Minh
21 tháng 12 2021 lúc 22:36

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\\ A=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\\ A=\left(2+2^2\right)\left(1+2^2+...+2^{98}\right)\\ A=6\left(1+2^2+...+2^{98}\right)⋮6\)

secret1234567
Xem chi tiết
Lấp La Lấp Lánh
18 tháng 10 2021 lúc 20:21

\(A=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)

\(=6+2^2.6+...+2^{98}.6\)

\(=6\left(1+2^2+...+2^{98}\right)⋮6\)

Minh Hiếu
18 tháng 10 2021 lúc 20:23

\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

\(=\left(2+2^2\right)+2^2\left(2+2\right)+...+2^{98}\left(2+2^2\right)\)

\(=\left(2+2^2\right)\left(1+2^2+...+2^{98}\right)\)

\(=6\left(1+2^2+...+2^{98}\right)\)⋮6

⇒ A⋮6

Nguyễn Văn Duy
Xem chi tiết

\(A=1+2+2^2+2^3+...+2^{100}\)

\(=1+\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

\(=1+2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)

\(=1+3\left(2+2^3+...+2^{99}\right)\)

=>A chia 3 dư 1

✿✿❑ĐạT̐®ŋɢย❐✿✿
4 tháng 1 2021 lúc 12:28

Có : \(S=1+2+2^2+2^3+....+2^{99}\)

\(\Rightarrow2S=2+2^2+2^3+....+2^{100}\)

\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+....+2^{99}\right)\)

\(\Rightarrow S=2^{100}-1< 2^{100}\)

Vậy \(S< 2^{100}\)

ミ★ήɠọς τɾίếτ★彡
4 tháng 1 2021 lúc 19:55

 S=1+2+22+23+....+299

⇒2S=2+22+23+....+2100

⇒2S−S=2100-1

S=2100-1

vì 2100 -1<2100

⇒S<2100