tìm x để \(x^3+5x^2+x+1=0\)
cho A=\(\left(\dfrac{2-x}{x+3}-\dfrac{3-x}{x+2}+\dfrac{2-x}{x^2+5x+6}\right):\left(1-\dfrac{x}{x-1}\right)\)
rút gọn
tìm x để A =0
A>0
ĐKXĐ: \(x\ne-3,x\ne-2,x\ne1\)
\(A=\dfrac{\left(2-x\right)\left(x+2\right)-\left(3-x\right)\left(x+3\right)+2-x}{\left(x+3\right)\left(x+2\right)}:\dfrac{x-1-x}{x-1}\)
\(=\dfrac{-\left(x+3\right)}{\left(x+3\right)\left(x+2\right)}.\left(1-x\right)=\dfrac{x-1}{x+2}\)
\(A=0\Leftrightarrow\dfrac{x-1}{x+2}=0\Leftrightarrow x=1\left(ktm\right)\Leftrightarrow S=\varnothing\)
Tìm x để :
a ) ( x - \(\frac{1}{3}\) ) ( 5x + 2 ) > 0
b ) ( 5x + 3 ) ( 3x - 2 ) < 0
a) \(\left(x-\frac{1}{3}\right)\left(5x+2\right)>0\)
<=> \(\left[\begin{array}{nghiempt}x-\frac{1}{3}>0\\5x+3< 0\end{array}\right.\) hoặc \(\left[\begin{array}{nghiempt}x-\frac{1}{3}< 0\\5x+3>0\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}x>\frac{1}{3}\\5x< 3\end{array}\right.\) hoặc \(\left[\begin{array}{nghiempt}x< \frac{1}{3}\\5x>3\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}x>\frac{1}{3}\\x< \frac{3}{5}\end{array}\right.\) hoặc \(\left[\begin{array}{nghiempt}x< \frac{1}{3}\\x>\frac{3}{5}\end{array}\right.\)
Vậy...
a) \(\left(x-\frac{1}{3}\right)\left(5x+2\right)>0\)
\(\Leftrightarrow\begin{cases}x-\frac{1}{3}>0\\5x+2>0\end{cases}\) hoặc \(\begin{cases}x-\frac{1}{3}< 0\\5x+2< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>\frac{1}{3}\\x>-\frac{2}{5}\end{cases}\) hoặc \(\begin{cases}x< \frac{1}{3}\\x< -\frac{2}{5}\end{cases}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x>\frac{1}{3}\\x< -\frac{2}{5}\end{array}\right.\)
b) \(\left(5x+3\right)\left(3x-2\right)< 0\)
\(\Leftrightarrow\begin{cases}5x+3>0\\3x-2< 0\end{cases}\) hoặc \(\begin{cases}5x+3< 0\\3x-2>0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>-\frac{3}{5}\\x< \frac{2}{3}\end{cases}\) hoặc \(\begin{cases}x< -\frac{3}{5}\\x>\frac{2}{5}\end{cases}\) (loại)
\(\Leftrightarrow-\frac{3}{5}< x< \frac{2}{3}\)
Cho mệnh đề chứa biến P(x), với x \(\in R\). Tìm x để P(x) là mệnh đề đúng?
a) P(x): " \(x^2-5x+4=0\) "
b) P(x): " \(x^2-5x+6=0\) "
c) P(x): " \(x^2-3x>0\) "
d) P(x): "\(\sqrt{x}>x\) "
e) P(x): " 2x+ 3<7 "
f) P(x): " \(x^2+x+1>0\) "
d) \(\sqrt[]{x}>x\)
\(\Leftrightarrow x-\sqrt[]{x}< 0\)
\(\Leftrightarrow\sqrt[]{x}\left(\sqrt[]{x}-1\right)< 0\left(x\ge0\right)\)
\(\Leftrightarrow0< x< 1\)
a) \(P\left(x\right):"x^2-5x+4=0"\)
\(x^2-5x+4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)
Vậy \(x\in\left\{1;4\right\}\) để \(P\left(x\right):"x^2-5x+4=0"\) đúng
b) \(P\left(x\right):"x^2-5x+6=0"\)
\(x^2-5x+6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy \(x\in\left\{2;3\right\}\) để \(P\left(x\right):"x^2-5x+6=0"\) đúng
c) \(P\left(x\right):"x^2-3x=0"\)
\(x^2-3x=0\)
\(\Leftrightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Vậy \(x\in\left\{0;3\right\}\) để \(P\left(x\right):"x^2-3x=0"\) đúng
d) \(P\left(x\right):"\sqrt[]{x}>x"\)
\(\sqrt[]{x}>x\)
\(\Leftrightarrow x-\sqrt[]{x}< 0\)
\(\Leftrightarrow\sqrt[]{x}\left(\sqrt[]{x}-1\right)< 0\)
\(\Leftrightarrow0< x< 1\)
Vậy \(x\in\left(0;1\right)\) để \(P\left(x\right):"\sqrt[]{x}>x"\) đúng
e) \(P\left(x\right):"2x+3< 7"\)
\(2x+3< 7\)
\(\Leftrightarrow2x< 4\)
\(\Leftrightarrow x< 2\)
Vậy \(x\in(-\infty;2)\) để \(P\left(x\right):"2x+3< 7"\) đúng
f) \(P\left(x\right):"x^2+x+1>0"\)
\(x^2+x+1>0\)
\(\Leftrightarrow x^2+x+\dfrac{1}{4}+\dfrac{3}{4}>0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
\(\Leftrightarrow\forall x\in R\) để \(P\left(x\right):"x^2+x+1>0"\) đúng
Bài 1: Tìm điều kiện để các phân thức sau có ý nghĩa
a)5x-3/2x^2-x b)x^2-5x+6/x^2-1
c)2/(x+1)(x-3) d)2x+1/x^2-5x+6
Bài 2: Dùng định nghĩa hai phân thức bằng nhau chứng minh các đẳng thức sau:
a)x-2/-x=2^3-x^3/x(x^2+2x+4) (với x =/0)
b)3x/x+y=-3x(x+y)/y^2-x^2 (với x=/ +_ y)
c)x+y/3a=3a(x+y^2)/9a^2(x+y) (với a=/ 0,x=/-y)
Bài 1:
c: ĐKXĐ: \(x\notin\left\{-1;3\right\}\)
C=5x+1/x^3-1-1-2x/x^2+x+1-2/1-x.
a)rút gọn C
b)tính giá trị C khi |x|=4
c)tìm x để C>0
a: \(C=\dfrac{5x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{2x-1}{x^2+x+1}+\dfrac{2}{x-1}\)
\(=\dfrac{5x+1+2x^2-3x+1+2x^2+2x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{4x^2+4x+3}{\left(x-1\right)\left(x^2+x+1\right)}\)
c: Để C>0 thì \(\dfrac{4x^2+4x+3}{\left(x-1\right)\left(x^2+x+1\right)}>0\)
=>x-1>0
hay x>1
Cho B=\(\dfrac{x^2+2x}{2x+10}+\dfrac{x-5}{x}-\dfrac{5x-50}{2x^2+10x}\)
a) Tìm điều kiện xác định và rút gọn B
b) Tìm x để B=0; B=\(\dfrac{1}{4}\)
c) Tính giá trị của B khi x=3
d) Tìm x để B<0; B>0
a) ĐKXĐ: \(x\notin\left\{0;-5\right\}\)
Ta có: \(B=\dfrac{x^2+2x}{2x+10}+\dfrac{x-5}{x}-\dfrac{5x-50}{2x^2+10x}\)
\(=\dfrac{x^2+2x}{2\left(x+5\right)}+\dfrac{x-5}{x}-\dfrac{5x-50}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+2x^2}{2x\left(x+5\right)}+\dfrac{2\left(x+5\right)\left(x-5\right)}{2x\left(x+5\right)}-\dfrac{5x-50}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+2x^2+2x^2-50-5x+50}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+4x^2-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}\)
\(=\dfrac{x^2+5x-x-5}{2\left(x+5\right)}\)
\(=\dfrac{x\left(x+5\right)-\left(x+5\right)}{2\left(x+5\right)}\)
\(=\dfrac{\left(x+5\right)\left(x-1\right)}{2\left(x+5\right)}\)
\(=\dfrac{x-1}{2}\)
b) Để B=0 thì \(\dfrac{x-1}{2}=0\)
\(\Leftrightarrow x-1=0\)
hay x=1(nhận)
Vậy: Để B=0 thì x=1
Để \(B=\dfrac{1}{4}\) thì \(\dfrac{x-1}{2}=\dfrac{1}{4}\)
\(\Leftrightarrow4\left(x-1\right)=2\)
\(\Leftrightarrow4x-4=2\)
\(\Leftrightarrow4x=6\)
hay \(x=\dfrac{3}{2}\)(nhận)
Vậy: Để \(B=\dfrac{1}{4}\) thì \(x=\dfrac{3}{2}\)
c) Thay x=3 vào biểu thức \(B=\dfrac{x-1}{2}\), ta được:
\(B=\dfrac{3-1}{2}=\dfrac{2}{2}=1\)
Vậy: Khi x=3 thì B=1
d) Để B<0 thì \(\dfrac{x-1}{2}< 0\)
\(\Leftrightarrow x-1< 0\)
\(\Leftrightarrow x< 1\)
Kết hợp ĐKXĐ, ta được:
\(\left\{{}\begin{matrix}x< 1\\x\notin\left\{0;-5\right\}\end{matrix}\right.\)
Vậy: Để B<0 thì \(\left\{{}\begin{matrix}x< 1\\x\notin\left\{0;-5\right\}\end{matrix}\right.\)
Để B>0 thì \(\dfrac{x-1}{2}>0\)
\(\Leftrightarrow x-1>0\)
hay x>1
Kết hợp ĐKXĐ, ta được: x>1
Vậy: Để B>0 thì x>1
Cho \(P=1+\frac{x+3}{x^2+5x+6}:\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)
a) Rút gọn P
b) Tìm x để P = 0
c) Tìm x để P>0
\(P=1+\frac{x+3}{x^2+5x+6}:\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)
\(P=1+\frac{x+3}{\left(x+3\right)\left(x+2\right)}:\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3\left(x^2-4\right)}-\frac{1}{x+2}\right)\)
\(P=1+\frac{1}{x+2}:\left(\frac{4x^2.2}{4x^2\left(x-2\right)}-\frac{x}{\left(x+2\right)\left(x-2\right)}-\frac{1}{x+2}\right)\)
\(P=1+\frac{1}{x+2}:\left(\frac{2}{x-2}-\frac{x}{\left(x+2\right)\left(x-2\right)}-\frac{x-2}{\left(x+2\right)\left(x-2\right)}\right)\)
\(P=1+\frac{1}{x+2}:\left(\frac{2x+4-x-x+2}{\left(x+2\right)\left(x-2\right)}\right)\)
\(P=1+\frac{1}{x+2}:\frac{6}{\left(x+2\right)\left(x-2\right)}=1+\frac{\left(x+2\right)\left(x-2\right)}{6\left(x+2\right)}=1+\frac{x-2}{6}\)
\(=\frac{x+4}{6}.P=0\Leftrightarrow x=-4\)
\(P>0\Leftrightarrow x>-4\)
sai lớp :>>>
Cho B = \(\left(\dfrac{x+2}{x^2-5x+6}-\dfrac{x+3}{2-x}-\dfrac{x+2}{x-3}\right):\left(2-\dfrac{x}{x+1}\right)\)
a) Tìm đkxđ của C
b) Rút gọn B
c) Tìm x để B = 0
Cho biểu thức 2x-9/x^2-5x+6-x+3/x-2-2x+1/3-x
a)Tìm x để P=-1/2,P<1
b)tính P khi x thỏa mãn x^2 -4=0
c) X thuộc Z để P nhận giá trị nguyên dương
Tìm m để các ptr sau có nghiệm kép.Tìm nghiệm kép đó
a,\(x^2-5x-2m+5=0\)
b,\(x^2-\left(2m-1\right)x+m^2-2m+3=0\)
c,\(\left(m+3\right)x^2-\left(2m+1\right)x+\left(m-1\right)=0\)
a: \(\text{Δ}=\left(-5\right)^2-4\left(-2m+5\right)\)
=25+8m-20=8m+5
Để phương trình có nghiệm kép thì 8m+5=0
=>m=-5/8
=>x^2-5x+25/4=0
=>x=5/2
b: \(\text{Δ}=\left(2m-1\right)^2-4\left(m^2-2m+3\right)\)
\(=4m^2-4m+1-4m^2+8m-12=4m-11\)
Để phương trình có nghiệm kép thì 4m-11=0
=>m=11/4
=>x^2-9/2x+81/16=0
=>x=9/4
c: TH1: m=-3
=>-(2*(-3)+1)x+(-3-1)=0
=>-(-5x)-4=0
=>5x-4=0
=>x=4/5(nhận)
TH2: m<>-3
\(\text{Δ}=\left(2m+1\right)^2-4\left(m+3\right)\left(m-1\right)\)
\(=4m^2+4m+1-4\left(m^2+2m-3\right)\)
\(=4m^2+4m+1-4m^2-8m+12=-4m+13\)
Để phương trình có nghiệm kép thì -4m+13=0
=>m=13/4
=>25/4x^2-15/2x+9/4=0
=>(5/2x-3/2)^2=0
=>x=3/2:5/2=3/2*2/5=3/5