Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hai ne
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2023 lúc 20:13

Bài 1:

a: \(M=x^2-10x+3\)

\(=x^2-10x+25-22\)

\(=\left(x^2-10x+25\right)-22\)

\(=\left(x-5\right)^2-22>=-22\forall x\)

Dấu '=' xảy ra khi x-5=0

=>x=5

b: \(N=x^2-x+2\)

\(=x^2-x+\dfrac{1}{4}+\dfrac{7}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\forall x\)

Dấu '=' xảy ra khi x-1/2=0

=>x=1/2

c: \(P=3x^2-12x\)

\(=3\left(x^2-4x\right)\)

\(=3\left(x^2-4x+4-4\right)\)

\(=3\left(x-2\right)^2-12>=-12\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

Nguyễn Sun Sin
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 12 2020 lúc 16:44

\(A=x-1+\dfrac{9}{x-1}+4\ge2\sqrt{\dfrac{9\left(x-1\right)}{x-1}}+4=10\)

\(A_{min}=10\) khi \(x=4\)

Nguyễn Huy Tú
19 tháng 1 2021 lúc 6:18

\(A=x+\frac{9}{x-1}+3\Leftrightarrow x-1+\frac{9}{x-1}+3\)

Áp dụng cosi 2 số đầu ta được : 

\(x-1+\frac{9}{x-1}\ge2\sqrt{\left(x-1\right)\frac{9}{x-1}}=6\)

Dễ dàng suy ra : \(A\ge3+6=9\)

Dấu ''='' xảy ra <=> \(x-1=\frac{9}{x-1}\Leftrightarrow\left(x-1\right)^2=9\)

TH1 : \(x-1=3\Leftrightarrow x=4\)( chọn )

TH2 : \(x-1=-3\Leftrightarrow x=-2\)( bỏ vì x > 1 ) theo giả thiết 

Vậy GTNN A là 9 <=> x = 4 

Khách vãng lai đã xóa
Nguyễn Phan Anh
Xem chi tiết
Edogawa Conan
4 tháng 8 2021 lúc 7:39

Ta có:A=x2-5x+1=\(\left(x^2-2.\dfrac{5}{2}x+\dfrac{25}{4}\right)-\dfrac{25}{4}+1=\left(x-\dfrac{5}{4}\right)^2-\dfrac{21}{4}\)

Vì \(\left(x-\dfrac{5}{4}\right)^2\ge0\)

⇒ \(A\ge-\dfrac{21}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\)

Toan Tran
Xem chi tiết
Minh Hiếu
24 tháng 11 2021 lúc 22:03

\(A=x^2-8x+5\)

\(=\left(x^2-8x+16\right)-11\)

\(=\left(x-4\right)^2-11\)

\(=-11+\left(x-4\right)^2\)

Vì \(\left(x-4\right)^2\) ≥ 0

⇒ A ≥ -11

Min A=-11 ⇔\(x-4=0\)

                 ⇔\(x=4\)

tanqr
Xem chi tiết
Lấp La Lấp Lánh
16 tháng 10 2021 lúc 10:23

\(A=x^2-6x+15=\left(x^2-6x+9\right)+6\)

\(=\left(x-3\right)^2+6\ge6\)

\(minA=6\Leftrightarrow x=3\)

Thị Thư Nguyễn
16 tháng 10 2021 lúc 10:23

A=x²-2x3+3²+6

A=(x-3)²+6

Vì (x-3)² luôn > hoặc = 0 với mọi x

=> (x-3)²+6 > hoặc = 6

Vậy GTNN = 6 

Dấu "=" xảy ra khi x-3=0

X=3

OH-YEAH^^
16 tháng 10 2021 lúc 10:24

\(A=x^2-6x+15\)

\(\Rightarrow A=x^2-6x+9+6\)

\(\Rightarrow A=\left(x^2-6x+9\right)+6\)

\(\Rightarrow A=\left(x-3\right)^2+6\)

Ta có: \(\left(x-3\right)^2+6\ge6\) với mọi x

Dấu ''='' xảy ra khi \(x=3\)

Hoàng An Nhiên
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 8 2021 lúc 20:43

Ta có: \(A=\left(x-3\right)^2+\left(11-x\right)^2\)

\(=x^2-6x+9+x^2-22x+121\)

\(=2x^2-28x+130\)

\(=2\left(x^2-14x+49+16\right)\)

\(=2\left(x-7\right)^2+32\ge32\forall x\)

Dấu '=' xảy ra khi x=7

HITANDRUN(NEW)
Xem chi tiết
Ken Handsome
6 tháng 3 2022 lúc 19:52

ủa, ko cho x thì sao mak làm:?

Nguyễn Phan Anh
Xem chi tiết
Edogawa Conan
6 tháng 8 2021 lúc 7:03

Ta có: A=2x2-3x+1=\(2\left(x^2-2.\dfrac{3}{4}+\dfrac{9}{16}\right)-\dfrac{1}{8}=2\left(x-\dfrac{3}{4}\right)^2-\dfrac{1}{8}\)

Vì \(2\left(x-\dfrac{3}{4}\right)^2\ge0\)

 \(\Rightarrow A\ge-\dfrac{1}{8}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{3}{4}\)

Vậy,Min \(A=\dfrac{-1}{8}\Leftrightarrow x=\dfrac{3}{4}\)

Hũ Thối Đậu
Xem chi tiết
Nguyễn Hoàng Minh
30 tháng 5 2022 lúc 9:30

\(A=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+y^2-8y+16-17\\ A=\left(x-y+1\right)^2+\left(y-4\right)^2-16\ge17\)

Vậy \(A_{min}=17\leftrightarrow\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)