tính \(\lim\limits_{x\rightarrow0}\left(\dfrac{x}{\sqrt[7]{x+1}.\sqrt{x+4}-2}\right)\)
Tính các giới hạn sau:
a) \(\lim\limits_{x\rightarrow0^-}\dfrac{2\left|x\right|+x}{x^2-x}\)
b) \(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{x^2-x}-\sqrt{x^2-1}\right)\)
c) \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt[3]{1+x^4+x^6}}{\sqrt{1+x^3+x^4}}\)
a: \(\lim\limits_{x->0^-^-}\dfrac{-2x+x}{x\left(x-1\right)}=lim_{x->0^-}\left(\dfrac{-x}{x\left(x-1\right)}\right)\)
\(=lim_{x->0^-}\left(\dfrac{-1}{x-1}\right)=\dfrac{-1}{0-1}=\dfrac{-1}{-1}=1\)
b: \(=lim_{x->-\infty}\left(\dfrac{x^2-x-x^2+1}{\sqrt{x^2-x}+\sqrt{x^2-1}}\right)\)
\(=lim_{x->-\infty}\left(\dfrac{-x+1}{\sqrt{x^2-x}+\sqrt{x^2-1}}\right)\)
\(=lim_{x->-\infty}\left(\dfrac{-1+\dfrac{1}{x}}{-\sqrt{1-\dfrac{1}{x^2}}-\sqrt{1-\dfrac{1}{x^2}}}\right)=\dfrac{-1}{-2}=\dfrac{1}{2}\)
Tính các giới hạn sau:\(M=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}-\sqrt[3]{1+6x}}{1-cos3x}\)
\(N=\lim\limits_{X\rightarrow0}\dfrac{\sqrt[m]{1+ax}-\sqrt[n]{1+bx}}{\sqrt{1+x}-1}\)
\(V=\lim\limits_{x\rightarrow0}\dfrac{\left(1+mx\right)^n-\left(1+nx\right)^m}{\sqrt{1+2x}-\sqrt[3]{1+3x}}\)
Tui nghĩ cái này L'Hospital chứ giải thông thường là ko ổn :)
\(M=\lim\limits_{x\rightarrow0}\dfrac{\left(1+4x\right)^{\dfrac{1}{2}}-\left(1+6x\right)^{\dfrac{1}{3}}}{1-\cos3x}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{1}{2}\left(1+4x\right)^{-\dfrac{1}{2}}.4-\dfrac{1}{3}\left(1+6x\right)^{-\dfrac{2}{3}}.6}{3.\sin3x}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{-\dfrac{1}{4}.4\left(1+4x\right)^{-\dfrac{3}{2}}.4+\dfrac{2}{9}.6.6\left(1+6x\right)^{-\dfrac{5}{3}}}{3.3.\cos3x}\)
Giờ thay x vô là được
\(N=\lim\limits_{x\rightarrow0}\dfrac{\left(1+ax\right)^{\dfrac{1}{m}}-\left(1+bx\right)^{\dfrac{1}{n}}}{\left(1+x\right)^{\dfrac{1}{2}}-1}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{1}{m}.\left(1+ax\right)^{\dfrac{1}{m}-1}.a-\dfrac{1}{n}\left(1+bx\right)^{\dfrac{1}{n}-1}.b}{\dfrac{1}{2}\left(1+x\right)^{-\dfrac{1}{2}}}=\dfrac{\dfrac{a}{m}-\dfrac{b}{n}}{\dfrac{1}{2}}\)
\(V=\lim\limits_{x\rightarrow0}\dfrac{\left(1+mx\right)^n-\left(1+nx\right)^m}{\left(1+2x\right)^{\dfrac{1}{2}}-\left(1+3x\right)^{\dfrac{1}{3}}}=\lim\limits_{x\rightarrow0}\dfrac{n\left(1+mx\right)^{n-1}.m-m\left(1+nx\right)^{m-1}.n}{\dfrac{1}{2}\left(1+2x\right)^{-\dfrac{1}{2}}.2-\dfrac{1}{3}\left(1+3x\right)^{-\dfrac{2}{3}}.3}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{n\left(n-1\right)\left(1+mx\right)^{n-2}.m-m\left(m-1\right)\left(1+nx\right)^{m-2}.n}{-\dfrac{1}{2}\left(1+2x\right)^{-\dfrac{3}{2}}.2+\dfrac{2}{9}.3.3\left(1+3x\right)^{-\dfrac{5}{3}}}=....\left(thay-x-vo-la-duoc\right)\)
Tính các giới hạn sau:\(I_1=\lim\limits_{x\rightarrow1}\dfrac{\left(1-\sqrt{x}\right)\left(1-\sqrt[3]{x}\right)....\left(1-\sqrt[n]{x}\right)}{\left(1-x\right)^{n-1}}\)
\(I_2=\lim\limits_{x\rightarrow0}\dfrac{\left(\sqrt{1+x^2}+x\right)^n-\left(\sqrt{1+x^2}-x\right)^n}{x}\)
Chúng ta tính giới hạn sau:
\(\lim\limits_{x\rightarrow1}\dfrac{1-\sqrt[n]{x}}{1-x}\)
Cách đơn giản nhất là sử dụng L'Hopital:
\(\lim\limits_{x\rightarrow1}\dfrac{1-x^{\dfrac{1}{n}}}{1-x}=\lim\limits_{x\rightarrow1}\dfrac{-\dfrac{1}{n}x^{\dfrac{1}{n}-1}}{-1}=\dfrac{1}{n}\)
Phức tạp hơn thì tách mẫu theo hằng đẳng thức
\(=\lim\limits_{x\rightarrow1}\dfrac{1-\sqrt[x]{n}}{\left(1-\sqrt[n]{x}\right)\left(1+\sqrt[n]{x}+\sqrt[n]{x^2}+...+\sqrt[n]{x^{n-1}}\right)}=\lim\limits_{x\rightarrow1}\dfrac{1}{1+\sqrt[n]{x}+\sqrt[n]{x^2}+...+\sqrt[n]{x^{n-1}}}=\dfrac{1}{n}\)
Tóm lại ta có:
\(\lim\limits_{x\rightarrow1}\dfrac{1-\sqrt[n]{x}}{1-x}=\dfrac{1}{n}\)
Do đó:
\(I_1=\lim\limits_{x\rightarrow1}\left(\dfrac{1-\sqrt[2]{x}}{1-x}\right)\left(\dfrac{1-\sqrt[3]{x}}{1-x}\right)...\left(\dfrac{1-\sqrt[n]{x}}{1-x}\right)=\dfrac{1}{2}.\dfrac{1}{3}...\dfrac{1}{n}=\dfrac{1}{n!}\)
Câu 2 cũng vậy: L'Hopital hoặc tách hằng đẳng thức trâu bò (thôi L'Hopital đi cho đỡ sợ)
\(I_2=\lim\limits_{x\rightarrow0}\dfrac{\left(\sqrt{1+x^2}+x\right)^n-\left(\sqrt{1+x^2}-x\right)^n}{x}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{n\left(\sqrt{1+x^2}+x\right)^{n-1}\left(\dfrac{x}{\sqrt{1+x^2}}+1\right)-n\left(\sqrt{1+x^2}-x\right)^{n-1}\left(\dfrac{x}{\sqrt{1+x^2}}-1\right)}{1}\)
\(=\dfrac{n.1-n\left(-1\right)}{1}=2n\)
\(\lim\limits_{x\rightarrow0^-}\left(\dfrac{1}{x^2}-\dfrac{2}{x^3}\right)\)
\(\lim\limits_{x\rightarrow1^+}\dfrac{\sqrt{x^3-x^2}}{\sqrt{x-1}+1-x}\)
\(\lim\limits_{x\rightarrow1^+}\dfrac{1}{x^3-1}-\dfrac{1}{x-1}\)
\(\lim\limits_{x\rightarrow-\infty}\left(x-\sqrt[3]{1-x^3}\right)\)
1/ \(\lim\limits_{x\rightarrow0^-}\left(\dfrac{x-2}{x^3}\right)=\lim\limits_{x\rightarrow0^-}\dfrac{2-x}{-x^3}=\dfrac{2}{0}=+\infty\)
2/ \(\lim\limits_{x\rightarrow1^+}\dfrac{\left(x^3-x^2\right)^{\dfrac{1}{2}}}{\left(x-1\right)^{\dfrac{1}{2}}+1-x}=\lim\limits_{x\rightarrow1^+}\dfrac{\dfrac{1}{2}\left(x^3-x^2\right)^{-\dfrac{1}{2}}.\left(3x^2-2x\right)}{\dfrac{1}{2}\left(x-1\right)^{-\dfrac{1}{2}}-1}=0\)
3/ \(\lim\limits_{x\rightarrow1^+}\dfrac{1-\left(x^2+x+1\right)}{x^3-1}=\dfrac{1-3}{0}=-\infty\)
4/ \(\lim\limits_{x\rightarrow-\infty}\left(-\infty-\sqrt[3]{1+\infty}\right)=-\left(\infty+\infty\right)=-\infty?\) Cái này ko chắc :v
cho \(\lim\limits_{x\rightarrow0}\left(\dfrac{x}{\sqrt[7]{x+1}\sqrt{x+4}-2}\right)=\dfrac{a}{b}\). tìm a,b biết a/b tối giản
\(\lim\limits_{x\rightarrow0}\dfrac{x}{\sqrt[7]{x+1}\left(\sqrt[]{x+4}-2\right)+2\left(\sqrt[7]{x+1}-1\right)}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{x}{\dfrac{x\sqrt[7]{x+1}}{\sqrt[]{x+4}+2}+\dfrac{2x}{\sqrt[7]{\left(x+1\right)^6}+\sqrt[7]{\left(x+1\right)^5}+\sqrt[7]{\left(x+1\right)^4}+\sqrt[7]{\left(x+1\right)^3}+\sqrt[7]{\left(x+1\right)^2}+\sqrt[7]{x+1}+1}}\)
\(=\dfrac{1}{\dfrac{1}{2+2}+\dfrac{2}{1+1+1+1+1+1+1}}=\dfrac{28}{15}\)
Các bạn tính giúp mình mấy câu này với:
1. \(\lim\limits_{x\rightarrow\left(-1\right)-}\dfrac{\sqrt{x^2-3x-4}}{1-x^2}\)
2. \(\lim\limits_{x\rightarrow2^+}\left(\dfrac{1}{x-2}-\dfrac{x+1}{\sqrt{x+2}-2}\right)\)
3. \(\lim\limits_{x\rightarrow+\infty}\dfrac{3x^2-5sin2x+7cos^2x}{2x^2+2}\)
4. \(\lim\limits_{x\rightarrow+\infty}\left(x.sin\left(\dfrac{1}{3x}\right)\right)\)
5. \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{2x+1}.\sqrt[3]{3x+1}.\sqrt[4]{4x+1}-1}{x}\)
6. \(\lim\limits_{x\rightarrow0}\left(\dfrac{\sqrt{9x+4}-\sqrt[3]{4x^{^2}+8}}{sinx}\right)\)
1.
\(\lim\limits_{x\to (-1)-}\frac{\sqrt{x^2-3x-4}}{1-x^2}=\lim\limits_{x\to (-1)-}\frac{\sqrt{(x+1)(x-4)}}{(1-x)(1+x)}\)
\(=\lim\limits_{x\to (-1)-}\frac{\sqrt{4-x}}{(x-1)\sqrt{-(x+1)}}=-\infty\) do:
\(\lim\limits_{x\to (-1)-}\frac{\sqrt{4-x}}{x-1}=\frac{-\sqrt{5}}{2}<0\) và \(\lim\limits_{x\to (-1)-}\frac{1}{\sqrt{-(x+1)}}=+\infty\)
2.
\(\lim\limits_{x\to 2+}\left(\frac{1}{x-2}-\frac{x+1}{\sqrt{x+2}-2}\right)=\lim\limits_{x\to 2+}\frac{1-(x+1)(\sqrt{x+2}+2)}{x-2}=-\infty\) do:
\(\lim\limits_{x\to 2+}\frac{1}{x-2}=+\infty\) và \(\lim\limits_{x\to 2+}[1-(x+1)(\sqrt{x+2}+2)]=-11<0\)
3.
\(\lim\limits_{x\to +\infty}\frac{3x^2-5\sin 2x+7\cos ^2x}{2x^2+2}=\lim\limits_{x\to +\infty}\frac{3x^2-5\sin 2x+7(1-\sin ^2x)}{2x^2+2}\)
\(=\lim\limits_{x\to +\infty}\frac{3(x^2+1)-5\sin 2x+4-7\sin ^2x}{2x^2+2}\)
\(=\lim\limits_{x\to +\infty}\left[\frac{3}{2}-5.\frac{\sin 2x}{2x}.\frac{2x}{2x^2+2}+\frac{2}{x^2+1}-7.(\frac{\sin x}{x})^2.\frac{x^2}{2x^2+2}\right]\)
\(=\frac{3}{2}-5.0.0+0-7.0.\frac{1}{2}=\frac{3}{2}\) (nhớ rằng \(\lim\limits_{t\to \infty}\frac{\sin t}{t}=0\))
Tính các giới hạn sau :
a) \(\lim\limits_{x\rightarrow-3}\dfrac{x+3}{x^2+2x-3}\)
b) \(\lim\limits_{x\rightarrow0}\dfrac{\left(1+x\right)^3-1}{x}\)
c) \(\lim\limits_{x\rightarrow+\infty}\dfrac{x-1}{x^2-1}\)
d) \(\lim\limits_{x\rightarrow5}\dfrac{x-5}{\sqrt{x}-\sqrt{5}}\)
e) \(\lim\limits_{x\rightarrow+\infty}\dfrac{x-5}{\sqrt{x}+\sqrt{5}}\)
f) \(\lim\limits_{x\rightarrow-2}\dfrac{\sqrt{x^2+5}-3}{x+2}\)
g) \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{x}-1}{\sqrt{x+3}-2}\)
h) \(\lim\limits_{x\rightarrow+\infty}\dfrac{1-2x+3x^3}{x^3-9}\)
i) \(\lim\limits_{x\rightarrow0}\dfrac{1}{x^2}\left(\dfrac{1}{x^2+1}-1\right)\)
j) \(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(x^2-1\right)\left(1-2x\right)^5}{x^7+x+3}\)
\(\lim\limits_{x\rightarrow-\infty}\left(\sqrt[3]{x^3+3x^2}-\sqrt{x^2-2x}\right)\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+2x}.\sqrt[3]{1+4x}-1}{x}\)
\(\lim\limits_{x\rightarrow-\infty}\left(\sqrt[3]{x^3+3x^2}-\sqrt{x^2-2x}\right)\)
\(=\lim\limits_{x\rightarrow-\infty}\left(\sqrt[3]{x^3+3x^2}-x+x-\sqrt{x^2-2x}\right)\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{x^3+3x^2-x^3}{\sqrt[3]{\left(x^3+3x^2\right)^3}+x\cdot\sqrt[3]{x^3+3x^2}+x^2}+\dfrac{x^2-x^2+2x}{x+\sqrt{x^2-2x}}\)
\(=\lim\limits_{x\rightarrow-\infty}\left(\dfrac{3x^2}{\sqrt[3]{\left(x^3+3x^2\right)^3}+x\cdot\sqrt[3]{x^3+3x^2}+x^2}+\dfrac{2x}{x+\sqrt{x^2-2x}}\right)\)
\(=\lim\limits_{x\rightarrow-\infty}\left(\dfrac{3}{\sqrt[3]{\left(1+\dfrac{3}{x}\right)^3}+\sqrt[3]{1+\dfrac{3}{x}}+\dfrac{1}{x}}+\dfrac{2}{1+\sqrt{1-\dfrac{2}{x}}}\right)\)
\(=\dfrac{3}{1+1+1}+\dfrac{2}{1+1}\)
=1+1
=2
\(\lim\limits_{x\rightarrow3}\dfrac{\sqrt{2x+3}-x}{x^2-4x+3}\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt[3]{x+1}-1}{\sqrt[4]{2x+1}-1}\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}-\sqrt[3]{1+6x}}{x^2}\)
\(a=\lim\limits_{x\rightarrow3}\dfrac{2x+3-x^2}{\left(x^2-4x+3\right)\left(\sqrt[]{2x+3}+x\right)}=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)\left(-x-1\right)}{\left(x-3\right)\left(x-1\right)\left(\sqrt[]{2x+3}+x\right)}\)
\(=\lim\limits_{x\rightarrow3}\dfrac{-x-1}{\left(x-1\right)\left(\sqrt[]{2x+3}+x\right)}=...\)
\(b=\lim\limits_{x\rightarrow0}\dfrac{\left(x+1\right)^{\dfrac{1}{3}}-1}{\left(2x+1\right)^{\dfrac{1}{4}}-1}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{1}{3}\left(x+1\right)^{-\dfrac{2}{3}}}{\dfrac{1}{2}\left(2x+1\right)^{-\dfrac{3}{4}}}=\dfrac{2}{3}\)
\(c=\lim\limits_{x\rightarrow0}\dfrac{\left(\sqrt[]{1+4x}-2x-1\right)+\left(2x+1-\sqrt[3]{1+6x}\right)}{x^2}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{-4x^2}{2x+1+\sqrt[]{4x+1}}+\dfrac{x^2\left(8x+12\right)}{\left(2x+1\right)^2+\left(2x+1\right)\sqrt[3]{1+6x}+\sqrt[3]{\left(1+6x\right)^2}}}{x^2}\)
\(=\lim\limits_{x\rightarrow0}\left(\dfrac{-4}{2x+1+\sqrt[]{4x+1}}+\dfrac{8x+12}{\left(2x+1\right)^2+\left(2x+1\right)\sqrt[3]{1+6x}+\sqrt[3]{\left(1+6x\right)^2}}\right)=...\)