Cho a,b >0
CM: \(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\ge\sqrt{a}+\sqrt{b}\)
Bài 1 : cho các số không âm a,b,c . Chứng minh :
a, \(\frac{a+b}{2}\ge\sqrt{ab}\)
b, \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)
c. \(a+b+\frac{1}{2}\ge\sqrt{a}+\sqrt{b}\)
d, \(\sqrt{\frac{a+b}{2}}\ge\frac{\sqrt{a}+\sqrt{b}}{2}\)
cảm ơn bạn vì đã giúp mình tìm hiểu thêm câu hỏi
a) bđt cosi
b) \(\left(\sqrt{a+b}\right)=a+b\)
\(\left(\sqrt{a}+\sqrt{b}\right)^2=a+b+2\sqrt{ab}\)
\(a+b+2\sqrt{ab}>a+b\)
=> đpcm
c) xét hiệu \(a-\sqrt{a}+\frac{1}{4}+b-\sqrt{b}+\frac{1}{4}\ge0\)
d)https://olm.vn/hoi-dap/question/1003405.html
nè ngại làm
Bài toán tương đương với : : \(a+b\ge2\sqrt{ab}\)
Ta có điều hiển nhiên sau : \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
\(< =>a+b-2\sqrt{ab}\ge0\)
\(< =>a+b\ge2\sqrt{ab}\left(đpcm\right)\)
chứng minh các đẳng thức sau
a)\(\frac{a+b}{b^2}\sqrt{\frac{a^2b^4}{a^2+2ab+b^2}}=\)/a/ với a+b>0 và b≠0
b)\(\frac{\sqrt{a}++\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\frac{2b}{b-a}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)với a≥0,b≥0 và a≠b
a/
\(=\frac{a+b}{b^2}.\frac{\left|a\right|.b^2}{\left|a+b\right|}=\frac{\left(a+b\right).b^2.\left|a\right|}{b^2\left(a+b\right)}=\left|a\right|\)
b/
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}-\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{4\sqrt{ab}+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{2\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)
C/Minh đẳng thức:
a) \(\left(\frac{\sqrt{a}+2}{a+2\sqrt{a}+1}-\frac{\sqrt{a}-2}{a-1}\right).\frac{\sqrt{a}+1}{\sqrt{a}}=\frac{2}{a-1}\) (với a>0, b>0, a≠b)
b)\(\frac{2}{\sqrt{ab}}:\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}=-1\) (với a>0, b>0,a≠b)
c) \(\frac{2\sqrt{a}+3\sqrt{b}}{\sqrt{ab}+2\sqrt{a}-3\sqrt{b}-6}-\frac{6-\sqrt{ab}}{\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6}=\frac{a+9}{a-9}\) (với a≥0, b≥0,a≠9)
Cho a, b ≥ 0. CMR: \(\sqrt{\frac{a+b}{2}}\ge\frac{\sqrt{a}+\sqrt{b}}{2}\)
theo BĐT cô - si ta có :
\(\frac{a+b}{2}\ge\sqrt{ab}\) \(\left(a\ge0,b\ge0\right)\)
\(\Leftrightarrow\)\(a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\)\(a+b+a+b\ge2\sqrt{ab}+a+b\)
\(\Leftrightarrow\)\(2a+2b\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)
\(\Leftrightarrow\)\(2\left(a+b\right)\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)
\(\Leftrightarrow\)\(\frac{1}{4}\cdot2\cdot\left(a+b\right)\ge\frac{1}{4}\cdot\left(\sqrt{a}+\sqrt{b}\right)^2\)
\(\Leftrightarrow\)\(\sqrt{\frac{a+b}{2}}\ge\sqrt{\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{4}}\)
\(\Leftrightarrow\)\(\sqrt{\frac{a+b}{2}}\ge\frac{\sqrt{a}+\sqrt{b}}{2}\) \(\left(đpcm\right)\)
BĐT \(\Leftrightarrow\frac{a+b}{2}\ge\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{4}\Leftrightarrow\frac{a-2\sqrt{ab}+b}{4}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{4}\ge0\)(đúng)
Đẳng thức xảy ra khi a = b
P/s: em ko chắc..
Cho a,b,c là các số dương thỏa mãn \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2019}\)
CMR: \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\sqrt{\frac{2019}{8}}\)
\(VT\ge\dfrac{a^2}{\sqrt{2\left(b^2+c^2\right)}}+\dfrac{b^2}{\sqrt{2\left(a^2+c^2\right)}}+\dfrac{c^2}{\sqrt{2\left(a^2+b^2\right)}}\)
Đặt \(\left(\sqrt{b^2+c^2};\sqrt{c^2+a^2};\sqrt{a^2+b^2}\right)=\left(x;y;z\right)\Rightarrow x+y+z=\sqrt{2019}\)
\(\Rightarrow\left\{{}\begin{matrix}a^2=\dfrac{y^2+z^2-x^2}{2}\\b^2=\dfrac{x^2+z^2-y^2}{2}\\c^2=\dfrac{x^2+y^2-z^2}{2}\end{matrix}\right.\) \(\Rightarrow2\sqrt{2}VT\ge\dfrac{y^2+z^2-x^2}{x}+\dfrac{z^2+x^2-y^2}{y}+\dfrac{x^2+y^2-z^2}{z}\)
\(\Rightarrow2\sqrt{2}VT\ge\dfrac{y^2+z^2}{x}+\dfrac{z^2+x^2}{y}+\dfrac{x^2+y^2}{z}-\left(x+y+z\right)\)
\(2\sqrt{2}VT\ge\dfrac{\left(y+z\right)^2}{2x}+\dfrac{\left(z+x\right)^2}{2y}+\dfrac{\left(x+y\right)^2}{2z}-\left(x+y+z\right)\)
\(2\sqrt{2}VT\ge\dfrac{4\left(x+y+z\right)^2}{2x+2y+2z}-\left(x+y+z\right)=x+y+z=\sqrt{2019}\)
\(\Rightarrow VT\ge\dfrac{\sqrt{2019}}{2\sqrt{2}}=\sqrt{\dfrac{2019}{8}}\) (đpcm)
Cho a,b,c là các số dương, Cm:
\(\frac{1}{\sqrt{a}+3\sqrt{b}}+\frac{1}{\sqrt{b}+3\sqrt{c}}+\frac{1}{\sqrt{c}+3\sqrt{a}}\ge\frac{1}{\sqrt{a}+2\sqrt{b}+\sqrt{c}}+\frac{1}{\sqrt{b}+2\sqrt{c}+\sqrt{a}}+\frac{1}{\sqrt{c}+2\sqrt{a}+\sqrt{b}}\)
Giúp Mình Với các bạn ơi !!!!!
Chứng minh gì vậy bạn
a, b, c > 0. CM:
a)\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\)
b)\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{a^2+b^2-ab}+\sqrt{b^2+c^2-bc}+\sqrt{c^2+a^2-ac}\)
a/ \(\frac{b}{b}.\sqrt{\frac{a^2+b^2}{2}}+\frac{c}{c}.\sqrt{\frac{b^2+c^2}{2}}+\frac{a}{a}.\sqrt{\frac{c^2+a^2}{2}}\)
\(\le\frac{1}{b}.\left(\frac{3b^2+a^2}{4}\right)+\frac{1}{c}.\left(\frac{3c^2+b^2}{4}\right)+\frac{1}{a}.\left(\frac{3a^2+c^2}{4}\right)\)
\(=\frac{1}{4}.\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{3}{4}.\left(a+b+c\right)\)
Ta cần chứng minh
\(\frac{1}{4}.\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{3}{4}.\left(a+b+c\right)\le\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
\(\Leftrightarrow\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\ge\left(a+b+c\right)\)
Mà: \(\Leftrightarrow\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)
Vậy có ĐPCM.
Câu b làm y chang.
Rút gọn biểu thức
a) \(\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}\) (a,b ≥ 0) \(\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}\) (a,b ≥ 0; a ≠ b)
b) \(\left(\sqrt{ab}-\sqrt{\frac{a}{b}}+\frac{1}{a}\sqrt{4ab}+\frac{1}{b}\sqrt{\frac{b}{a}}\right):\left(1+\frac{2}{a}-\frac{1}{b}+\frac{1}{ab}\right)vớia,b>0\)
1. Cho a,b không âm
CMR : \(\frac{a+b}{2}\ge\sqrt{ab}\)
2. Cho a,b không âm
CMR : \(\sqrt{\frac{a+b}{2}}\ge\frac{\sqrt{a}+\sqrt{b}}{2}\)
3. Cho biểu thức :
\(M=\frac{1}{\sqrt{1\cdot2005}}+\frac{1}{\sqrt{2\cdot2004}}+...+\frac{1}{\sqrt{2005\cdot1}}\)
CMR : \(M\ge\frac{2005}{1003}\)
1. Ta có:
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( Nếu a, b ≥ 0)
=> \(a-2\sqrt{ab}+b\ge0\)
=> \(\left(a-2\sqrt{ab}+b\right)+2\sqrt{ab}\ge0+2\sqrt{ab}\)
=> \(a+b\ge2\sqrt{ab}\) => \(\frac{\left(a+b\right)}{2}\ge\frac{2\sqrt{ab}}{2}\)
=> \(\frac{\left(a+b\right)}{2}\ge\sqrt{ab}\);
(Dấu "=" xảy ra khi \(\sqrt{a}-\sqrt{b}=0\) => a = b)
1. BĐT \(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
2. BĐT \(\Leftrightarrow\frac{a+b}{2}\ge\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{4}\)
\(\Leftrightarrow2\left(a+b\right)\ge a+2\sqrt{ab}+b\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
3. Ta có: \(M=\frac{2}{\sqrt{1\cdot2005}}+\frac{2}{\sqrt{2\cdot2004}}+...+\frac{2}{\sqrt{1003\cdot1003}}\)
Áp dụng BĐT Cô-si:
\(\sqrt{1\cdot2005}\le\frac{1+2005}{2}=1003\)
Do dấu "=" không xảy ra nên \(\sqrt{1\cdot2005}< 1003\)
Khi đó: \(\frac{2}{\sqrt{1\cdot2005}}>\frac{2}{1003}\)
Chứng minh tương tự với các phân thức còn lại rồi cộng vế ta được :
\(M>\frac{2006}{1003}>\frac{2005}{1003}\) ( đpcm )
Em có cách khác ở bài 2 nè:) Nhưng thôi làm 2 bài luôn bài 3 ý tưởng y hệt hà..
Bài 1: BĐT \(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\left(true\right)\)
Đẳng thức xảy ra khi a = b
Bài 2: BĐT trên là thuần nhất (hay đồng bậc gì ấy) nên ta chuẩn hóa a + b =2.
Cần chứng minh: \(1\ge\frac{\sqrt{a}+\sqrt{b}}{2}\)
Thật vậy theo Cô si: \(RHS\left(VP\right)=\frac{\sqrt{1.a}+\sqrt{1.b}}{2}\le\frac{\frac{a+1}{2}+\frac{b+1}{2}}{2}=\frac{a+b+2}{4}=1=LHS\left(VT\right)\)
Ta có đpcm. True?
cho a;b;c là các số thực dương.CMR:\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\ge\frac{3\sqrt{2}}{2}\)
Chuẩn hóa \(a+b+c=3\) thì cần c/m
\(\sqrt{\frac{a}{3-a}}+\sqrt{\frac{b}{3-b}}+\sqrt{\frac{c}{3-c}}\ge\frac{3\sqrt{2}}{2}\)
Ta có BĐT phụ \(\sqrt{\frac{a}{3-a}}\ge\frac{3\sqrt{2}}{8}a+\frac{\sqrt{2}}{8}\)
\(\Leftrightarrow\frac{\frac{3\left(a-1\right)^2\left(3a-1\right)}{32\left(3-a\right)}}{\sqrt{\frac{a}{3-a}}+\frac{3\sqrt{2}}{8}a+\frac{\sqrt{2}}{8}}\ge0\forall0< a< 3\)
Tương tự cho 2 BĐT còn lại cũng có:
\(\sqrt{\frac{b}{3-b}}\ge\frac{3\sqrt{2}}{8}b+\frac{\sqrt{2}}{8};\sqrt{\frac{c}{3-c}}\ge\frac{3\sqrt{2}}{8}c+\frac{\sqrt{2}}{8}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\frac{3\sqrt{2}}{8}\left(a+b+c\right)+\frac{\sqrt{2}}{8}\cdot3=\frac{3\sqrt{2}}{2}\)