\(\sqrt{\frac{169}{121}+\frac{\sqrt{ }144}{11}}\)
Thực hiện phép tính sau
a. F=[12(1)-2,3(6)]:4,(21)
b.\(\frac{1\frac{11}{34}.4\frac{3}{7}-\left(\frac{3}{2}-6\frac{1}{3}.\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}.\left(12-5\frac{1}{3}\right)}\)
c.1-\(\frac{\sqrt{121}}{\sqrt{196}}-\frac{\sqrt{169}}{\sqrt{144}}+\frac{\sqrt{25}}{\sqrt{36}}+\left(-1\frac{2}{3}\right):\left(-3\frac{1}{3}\right)\)
c/
\(=1-\frac{11}{14}-\frac{14}{12}+\frac{5}{6}+\frac{-5}{3}:\frac{-10}{3}\)
\(=1-\frac{11}{14}-\frac{14}{12}+\frac{5}{6}+\frac{-5}{3}.\frac{-3}{10}\)
\(=1-\frac{11}{14}-\frac{14}{12}+\frac{5}{6}+\frac{1}{2}\)
\(=1-\left(\frac{66}{84}+\frac{98}{84}-\frac{70}{84}-\frac{42}{84}\right)\)
Mik làm tiếp nhé tại lúc nãy bấm nhầm!
Câu c/ (tiếp theo)
\(=1-\frac{52}{84}\)
\(=\frac{84}{84}-\frac{52}{84}=\frac{32}{84}=\frac{8}{21}\)
Câu a: Sai đề
1A)thực hiện phép tính
a)\(\sqrt{144}.\sqrt{-\frac{-49}{64}}.\sqrt{0,01}\)
b)\(\left(\sqrt{0,25}-\sqrt{\left(-15\right)^2}+\sqrt{2,25}\right):\sqrt{169}\)
1b)hãy tính
a)\(\left(\sqrt{0,04}-\sqrt{\left(-1,2\right)^2}+\sqrt{121}\right).\sqrt{81}\)
b)\(75:\sqrt{3^2+\left(-4\right)^2}-3.\sqrt{\left(-5\right)^2-3^2}\)
Áp dụng quy tắc khai phương một phương, hãy tính :
\(\sqrt{\frac{9}{169}}\) ; \(\sqrt{\frac{25}{144}}\) ; \(\sqrt{1\frac{9}{16}}\) ; \(\sqrt{2\frac{7}{81}}\)
Tính
\(\sqrt{8,1}\times\sqrt{250}\)
\(\sqrt{2,5}\times\sqrt{360}\)
\(\sqrt{\frac{-36}{-169}}\)
\(\sqrt{\frac{-49}{-121}}\)
\(\sqrt{8,1}.\sqrt{250}\)
\(=\sqrt{81}.\sqrt{25}\)
\(=9.5\)
\(=45\)
\(\sqrt{2,5}.\sqrt{360}\)
\(=\sqrt{25}.\sqrt{36}\)
\(=5.6\)
\(=30\)
\(\sqrt{\frac{-49}{-121}}=\sqrt{\frac{49}{121}}\)
\(=\frac{\sqrt{49}}{\sqrt{121}}\)
\(=\frac{7}{11}\)
\(\sqrt{\frac{-36}{-169}}=\sqrt{\frac{36}{169}}\)
\(=\frac{\sqrt{36}}{\sqrt{169}}=\frac{6}{13}\)
Hãy tích cho tui đi
vì câu này dễ mặc dù tui ko biết làm
Yên tâm khi bạn tích cho tui
Tui sẽ ko tích lại bạn đâu
THANKS
Chứng minh rằng: \(\frac{1}{\sqrt{1}}\)+\(\frac{1}{\sqrt{2}}\)+\(\frac{1}{\sqrt{3}}\)+......+\(\frac{1}{\sqrt{121}}\)>11
\(\frac{1}{\sqrt{1}}< \frac{1}{\sqrt{121}}\)
\(\frac{1}{\sqrt{2}}< \frac{1}{\sqrt{121}}\)
................
\(\frac{1}{\sqrt{121}}=\frac{1}{\sqrt{121}}\)
Suy ra \(\frac{1}{\sqrt{1}}\)+\(\frac{1}{\sqrt{2}}\)+.............+\(\frac{1}{\sqrt{121}}\)<\(\frac{1}{\sqrt{121}}+\frac{1}{\sqrt{121}}+\frac{1}{\sqrt{121}}+......\frac{1}{\sqrt{121}}\)=\(\frac{121}{11}\)=11(đpcm)(vì có 121 chữ số)\(\frac{1}{\sqrt{121}}\))
Khuyển Dạ Xoa : \(\sqrt{1}< \sqrt{121}\Rightarrow\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{121}}\) chứ?
tth đúng rồi đó,Khuyển Dạ Xoa ngược dấu rồi! :)
Bài 1. So sánh
a) \(\sqrt{2009}-\sqrt{2008}\)và \(\sqrt{2007}-\sqrt{2006}\)
b) \(\sqrt{11+\sqrt{96}}\)và \(\frac{2\sqrt{2}}{1+\sqrt{2}-\sqrt{3}}\)
Bài 2. Tính tổng
\(T=\frac{1}{1-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-...+\frac{1}{\sqrt{2007}-\sqrt{2008}}\)
\(D=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{120\sqrt{121}+121\sqrt{120}}\)
ai cứu mk ikk
Bài 2:
\(D=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{120\sqrt{121}+121\sqrt{120}}\)
Với mọi \(n\inℕ^∗\)ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{[\left(n+1\right)\sqrt{n}]^2-\left(n\sqrt{n+1}\right)^2}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)^2-n^2\left(n+1\right)}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\left(\sqrt{n}+1\right)}{n\left(n+1\right)\left(n+1-n\right)}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)
\(=\frac{\left(n+1\right)\sqrt{n}}{n\left(n+1\right)}-\frac{n\sqrt{n+1}}{n\left(n+1\right)}\)
\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
\(\Rightarrow D=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{4}}+....+\frac{1}{\sqrt{120}}-\frac{1}{\sqrt{121}}\)
\(=1-\frac{1}{\sqrt{121}}=\frac{10}{11}\)
Bài 1: chắc lại phải "liên hợp" gì đó rồi:V
\(\sqrt{2009}-\sqrt{2008}=\frac{1}{\sqrt{2009}+\sqrt{2008}}\)
\(\sqrt{2007}-\sqrt{2006}=\frac{1}{\sqrt{2007}+\sqrt{2006}}\)
Đó \(\sqrt{2009}+\sqrt{2008}>\sqrt{2007}+\sqrt{2006}\)
Nên \(\sqrt{2009}-\sqrt{2008}< \sqrt{2007}-\sqrt{2006}\)
Tổng quát ta có bài toán sau, với So sánh \(\sqrt{n}-\sqrt{n-1}\text{ và }\sqrt{n-2}-\sqrt{n-3}\)
Với \(n\ge3\). Lời giải xin mời các bạn:)
Câu a)
Có: \(A=\sqrt{2009}-\sqrt{2008}\Leftrightarrow A^2=1-2\sqrt{2009\cdot2008}\)
\(B=\sqrt{2007}-\sqrt{2006}\Rightarrow B^2=1-2\sqrt{2007\cdot2006}\)
Đương nhiên: \(2\sqrt{2009\cdot2008}>2\sqrt{2006\cdot2007}\)
Suy ra: \(A< B\)
Sắp xếp từ nhỏ đến lớn:\(\frac{1}{\sqrt{121}};\frac{\sqrt{121}}{\sqrt{12321}};...:\frac{\sqrt{123456787654321}}{\sqrt{12345678987654321}}\)
Tính:
a) \(\sqrt{7}.\sqrt{55}.\sqrt{35}.\sqrt{11}\)
b) \(\frac{\sqrt{144}}{23}:\frac{\sqrt{16}}{23}\)
c) \(\frac{\sqrt{5}}{\sqrt{125}}\)
d) \(\frac{\sqrt{135}}{\sqrt{15}}\)
a) \(\sqrt{7}.\sqrt{55}.\sqrt{35}.\sqrt{11}=\sqrt{7.55.35.11}=\sqrt{7.5.11.5.7.11}=\sqrt{\left(5.7.11\right)^2}\)
\(=5.7.11=385\)
b) \(\frac{\sqrt{144}}{23}:\frac{\sqrt{16}}{23}=\frac{\sqrt{144}}{23}.\frac{23}{\sqrt{16}}=\frac{\sqrt{144}}{\sqrt{16}}=\sqrt{\frac{144}{16}}=\sqrt{9}=3\)
c) \(\frac{\sqrt{5}}{\sqrt{125}}=\sqrt{\frac{5}{125}}=\sqrt{\frac{1}{25}}=\frac{1}{5}\)
d) \(\frac{\sqrt{135}}{\sqrt{15}}=\sqrt{\frac{135}{15}}=\sqrt{9}=3\)
a)\(\sqrt{7}.\sqrt{55}.\sqrt{35}.\sqrt{11}=\left(\sqrt{7}.\sqrt{355}\right).\left(\sqrt{35}.\sqrt{11}\right)=\sqrt{385}.\sqrt{385}=385\)
b) \(\frac{\sqrt{144}}{23}:\frac{\sqrt{16}}{23}=\frac{12}{23}.\frac{23}{4}=3\)
c) \(\frac{\sqrt{5}}{\sqrt{125}}=\sqrt{\frac{5}{125}}=\sqrt{\frac{1}{25}}=\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5}\)
d) \(\frac{\sqrt{135}}{\sqrt{15}}=\sqrt{\frac{135}{15}}=\sqrt{9}=3\)
Bài làm :
\(\text{a)}\sqrt{7}.\sqrt{55}.\sqrt{35}.\sqrt{11}=\left(\sqrt{7}.\sqrt{355}\right).\left(\sqrt{35}.\sqrt{11}\right)=\sqrt{385}.\sqrt{385}=385\)
\(\text{b)}\frac{\sqrt{144}}{23}\div\frac{\sqrt{16}}{23}=\frac{12}{23}.\frac{23}{4}=\frac{12}{4}=3\)
\(\text{c)}\frac{\sqrt{5}}{\sqrt{125}}=\sqrt{\frac{5}{125}}=\sqrt{\frac{1}{25}}=\frac{1}{5}\)
\(\text{d)}\frac{\sqrt{135}}{\sqrt{15}}=\sqrt{\frac{135}{15}}=\sqrt{9}=3\)
Tính giá trị của biểu thức \(M=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{121\sqrt{120}+120\sqrt{121}}\)
Với \(k\in N;k\ne0\) ta có :
\(\frac{1}{\left(k+1\right)\sqrt{k}+k\sqrt{\left(k+1\right)}}=\frac{1}{\sqrt{k\left(k+1\right)}\left(\sqrt{k}+\sqrt{k+1}\right)}\)
\(=\frac{\sqrt{k+1}+\sqrt{k}}{\sqrt{k\left(k+1\right)}\left(\sqrt{k+1}-\sqrt{k}\right)\left(\sqrt{k+1}+\sqrt{k}\right)}=\frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}}\)
\(=\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\)
Áp dụng ta có :
\(M=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{120}}-\frac{1}{\sqrt{121}}=1-\frac{1}{11}=\frac{10}{11}\)