Chứng minh rằng: \(\frac{1}{\sqrt{1}}\)+\(\frac{1}{\sqrt{2}}\)+\(\frac{1}{\sqrt{3}}\)+......+\(\frac{1}{\sqrt{121}}\)>11
Sắp xếp từ nhỏ đến lớn:\(\frac{1}{\sqrt{121}};\frac{\sqrt{121}}{\sqrt{12321}};...:\frac{\sqrt{123456787654321}}{\sqrt{12345678987654321}}\)
Sắp xếp các số sau từ nhỏ đến lớn:\(\frac{1}{121};\frac{\sqrt{121}}{\sqrt{12321}};...;\frac{\sqrt{123456787654321}}{\sqrt{12345678987654321}}\)
\(\sqrt{\frac{16}{36}}+\sqrt{\frac{9}{49}}+\sqrt{\frac{121}{25}}\)
tinh va so sanh:
a:\(\sqrt{9\cdot4}\)va \(\sqrt{9}\cdot\sqrt{4}\)
b:\(\sqrt{169-144}\)va \(\sqrt{169}-\sqrt{144}\)
BT1: Tinh
\(1.A=\left(4-\frac{1}{2}+\frac{2}{3}\right)+\left(5+\frac{4}{3}-\frac{6}{5}\right)-\left(6-\frac{7}{4}+\frac{4}{5}\right)\)
\(2.B=\frac{\left(-1\right)^6.3^5.4^3}{9^2.2^5}\)
\(3.\frac{4}{5}.\frac{11}{3}-\frac{4}{5}.\frac{8}{3}+\frac{1}{5}\)
\(4.\sqrt{289-\sqrt{169+\sqrt{256-\sqrt{196}}}}\)
\(5.\frac{3^{15}.2^{18}.5^4}{6^{14}.10^5}\)
Giúp mik với
Tính
a)\(\frac{2}{3}\sqrt{81}-\left(\frac{-3}{4}\right).\sqrt{\frac{9}{64}}+\left(\frac{\sqrt{2}}{3}\right)^2\)
b)\(\left(-\sqrt{\frac{5}{4}}\right)^2-\sqrt{\frac{9}{4}}:\left(-4,5\right)-\sqrt{\frac{25}{16}}.\sqrt{\frac{64}{9}}\)
c)\(-2^4-\left(-2\right)^2:\left(-\sqrt{\frac{16}{121}}\right)-\left(-\sqrt{\frac{2}{3}}\right)^2:\left(-2\frac{2}{3}\right)\)
So sánh A và B :
a)
\(A=\sqrt{20+1}+\sqrt{40+2}+\sqrt{60+3}\)
\(B=\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{20}+\sqrt{40}+\sqrt{60}\)
b)
\(A=\frac{1}{\sqrt{121}}+\frac{1}{\sqrt{12321}}+\frac{1}{\sqrt{1234321}}+...+\frac{1}{\sqrt{12345678987654321}}\)
\(B=0,111111111\)
Tính nhanh:
\(\frac{3-3^2+3^3-3^4+...+3^{99}}{\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}}.\left(11-\sqrt{91}\right)\left(11-\sqrt{95}\right)\left(11+\sqrt{99}\right)\left(11-\sqrt{103}\right)\left(11-\sqrt{109}\right)\left(11-\sqrt{113}\right)...\left(11-\sqrt{113}\right)\left(11-\sqrt{104}\right)\)